
Faster estimation of discrete choice models
via dataset reduction

Nicola Ortelli

Matthieu de Lapparent

Michel Bierlaire

STRC conference paper 2022 May 20, 2022

Monte Verità / Ascona, May 18-20, 2022



Faster estimation of discrete choice models via dataset reduction May 20, 2022

Faster estimation of discrete choice models
via dataset reduction

Nicola Ortelli, Matthieu de Lapparent
School of Management and Engineering Vaud
HES-SO
Yverdon-les-Bains, Switzerland

nicola.ortelli@heig-vd.ch

Nicola Ortelli, Michel Bierlaire
Transport and Mobility Laboratory
EPFL
Lausanne, Switzerland

May 20, 2022

Abstract

In the field of choice modeling, the availability of ever-larger datasets has the potential to
significantly expand our understanding of human behavior, but this prospect is limited
by the poor scalability of discrete choice models. Specifically, as sample sizes increase,
the computational cost of maximum likelihood estimation quickly becomes intractable
for anything but trivial model structures. Efforts to tackle this issue have mainly been
dedicated to improving the optimization methods used for estimating discrete choice
models, but an equally promising approach consists in sampling datasets so as to reduce
their size.

This paper proposes a simple dataset reduction method that is specifically designed to
preserve the diversity of observations originally present in the dataset. Our approach
leverages locality-sensitive hashing to create clusters of similar observations, from which
representative observations are then sampled. We demonstrate the efficacy of our approach
by applying it on a real-world mode choice dataset; the obtained preliminary results seem to
confirm that a carefully selected subsample of observations is capable of providing close-to-
identical estimation results while being, by definition, less computationally demanding.
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1 Introduction

The technological advancements of the past 20 years have allowed transforming an
increasing part of our daily actions and decisions into storable data. Specifically, the rise
of digital communication has led to a radical change in the scale and scope of available
data in relation to virtually any object of interest. In the field of discrete choice analysis,
such abundance of data has the potential to significantly expand our understanding of
human behavior, but this prospect is limited by the poor scalability of discrete choice
models (DCMs).

Specifically, the use of ever-larger datasets raises two issues: (i) the number of possible
model specifications exponentially grows with the number of covariates, implying that
analysts must spend more time to find good models; and (ii) the computational cost of
maximum likelihood estimation increases with the number of observations and quickly
becomes intractable for advanced model structures or for large datasets. While the first
issue has spurred great interest,1 the second has received much less attention: to deal with
the increased computational cost associated with large datasets, effort has mainly been
dedicated to improving the optimization methods used for estimating DCMs (Lederrey
et al., 2021) and to enhancing their implementation (Molloy et al., 2021; Arteaga et al.,
2022).

This study explores a less common approach, which consists in reducing the size of large
datasets by subsampling their observations. Because the most commonly used algorithms
for maximum likelihood estimation compute the log likelihood function and its gradient
across the whole dataset at each iteration, considering fewer observations effectively reduces
their computational burden. Removing observations from a dataset is usually advised
against by econometricians and choice modelers, but has nevertheless become common
practice when machine learning models need to be trained on large amounts of data. Data
reduction techniques such as smart sampling (Pedergnana et al., 2016), instance selection
(Arnaiz-González et al., 2016), novelty detection (Pimentel et al., 2014) or curriculum
learning (Bengio et al., 2009) all share the same premise that observations within a dataset
may have different levels of importance in estimating a specific model; depending on the
technique, these observations are either entirely removed from the dataset or set aside
and used in later stages of the model training process.

1The recent literature is rich in studies that seek to mitigate the need for presumptive structural
assumptions. We refer the reader to van Cranenburgh et al. (2021) for an extensive review and
discussion.
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To the best of our knowledge, the only study that explores this same approach in the
context of discrete choice modeling is presented in van Cranenburgh and Bliemer (2019):
their proposed method scales down any dataset to a predefined fraction of its original size
while iteratively minimizing an estimate of the D-error, obtained by means of a simplified
version of the model of interest.2 In doing so, they seek to guarantee that the model
parameters are estimated as precisely as possible on a subsample of observations that is
much smaller than the full dataset. In reality, this encourages their algorithm to keep
only similar observations, which may lead to severely biased parameters, as the model
of interest might be estimated on a subsample that is not representative of the original
dataset.

In this paper, we propose a simple dataset reduction method that is specifically designed to
introduce as little bias as possible in the parameters of models estimated on the obtained
subsamples. We diverge from the premise that all datasets contain some fraction of
less relevant observations; instead, our method is designed to preserve the diversity of
observations originally present in the dataset. Our approach leverages locality-sensitive
hashing (LSH) to create clusters of similar observations, from which “representative”
observations are then sampled. Observations obtained in such way are then given weights
that are proportional to the sizes of the clusters they represent, so as to mimic the original
dataset during the model estimation process. As argued in the following sections, we
believe that a carefully selected and weighted subsample of observations is capable of pro-
viding close-to-identical estimation results while being, by definition, less computationally
demanding.

The remainder of this document is organized as follows: Section 2 begins by introducing
the concept of locality-sensitive hashing and then proceeds to describe our proposed
algorithm; Section 3 presents and discusses the preliminary results obtained by applying
our method to a real-world mode choice dataset; finally, Section 4 sets out the conclusions
of the present study and identifies directions for future research.

2The D-error statistic is a measure of efficiency commonly used in experimental design. It is defined as
the determinant of the asymptotic variance-covariance matrix of the estimated model parameters.
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2 Methodology

2.1 Preliminary

Let us consider a choice dataset containing N observations, each consisting of a vector xn
of explanatory variables associated with individual n, together with the observed choice
in of that same individual among J alternatives. In its simplest form, a discrete choice
model P (i | xn; θ) calculates the probability that individual n chooses alternative i as a
function of xn and θ, where θ is a vector of model parameters to be estimated from the
data.

The values of the model parameters are typically determined through maximum likelihood
estimation, which consists in finding values that maximize the joint probability of replicat-
ing all observed choices in the dataset. In practice, we usually maximize the logarithm of
the likelihood instead, for numerical reasons. The log likelihood is therefore defined as

L(θ) =
N∑

n=1

P (in |xn; θ) . (1)

Let us now assume that the dataset contains some observations that are identical in
all explanatory variables and in the observed choice. By dividing the observations into
G < N mutually exclusive groups such that each group exclusively contains identical
observations, we may rewrite Eq. (1) as

L(θ) =
G∑

g=1

Ng · P (ig |xg; θ) , (2)

where Ng is the size of group g, and ig and xg are the observed choice and explanatory
variables associated with all observations in group g, respectively. Eq. (1) and Eq. (2)
are equivalent; however, since G < N , the computational cost associated with evaluating
the log likelihood function is smaller for Eq. (2), by a ratio of G

N
.3 Models built on few

explanatory variables may therefore see their estimation time greatly reduced by this
factorization, whereas the same trick is expected to be less effective on models that include
a large number of variables, as those will lessen the redundancy in the dataset.

3One could argue that multiplying P (ig |xg; θ) by Ng adds operations that are not required in Eq. (1).
Still, the computational burden of these additional operations is negligible in comparison to the
number of operations needed to evaluate P (in |xn; θ) for every n.
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The idea behind our dataset reduction method is to extend this “factorization trick” to
nearly identical observations. In other words, by clustering together not only identical, but
also very similar observations, the intent of our method is to further decrease the number
of distinct groups and, in doing so, effectively reduce the computational cost associated
with evaluating the log likelihood function and its gradient. The clustering technique
chosen for this purpose is locality-sensitive hashing (LSH), which we introduce now.

2.2 Locality-sensitive hashing

LSH is an efficient method for finding similar items in data. As opposed to conventional
hashing functions, which allocate items to unique encrypted outputs, LSH seeks to gather
“similar” items into clusters—or buckets. It does so by combining the outcomes of several
hashing functions, designed in such way that pairs of items are more likely to be hashed
to the same bucket if they are close to each other in their original space than if they are
far apart. A considerable advantage of LSH over other clustering techniques is that its
computational complexity is linear in the number of items to be hashed.

A family of LSH functions H = {h : (M,d)→ Z} is a collection of functions h that map
elements of a metric space (M,d) onto the set of integers Z, each integer representing a
different bucket (Leskovec et al., 2020).

Let d1 < d2 be two distances according to the metric d; family H is said to be
(d1, d2, p1, p2)-sensitive if, for any pair of points xA, xB ∈M and for any function h ∈ H,
it fulfills the conditions

P (h(xA) = h(xB)) ≥ p1 if d(xA, xB) ≤ d1 (3)

and

P (h(xA) = h(xB)) ≤ p2 if d(xA, xB) ≥ d2. (4)

Fig. 1 illustrates the expected behavior of a (d1, d2, p1, p2)-sensitive hash function. The
highest the value of p1, the lowest the chances of observing false positives, i.e., similar items
hashed to different buckets. Likewise, the lowest the value of p2, the lowest the chances of
observing false negatives, i.e., dissimilar items that end up in the same bucket.
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Figure 1: Behavior of a (d1, d2, p1, p2)-sensitive hash function.
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By combining several LSH functions together, it is possible to drive p1 and p2 apart
from each other, hence simultaneously reducing the chances of both false positives and
false negatives (Leskovec et al., 2020). Given a (d1, d2, p1, p2)-sensitive family H of hash
functions, the AND-construction and the OR-construction are defined as follows.

• Each member h′ of a familyHAND created fromH by the AND-construction combines
r randomly chosen functions {h1, . . . , hr} ∈ H such that

h′(xA) = h′(xB) ⇐⇒ hi(xA) = hi(xB) ∀i = 1, . . . , r. (5)

• Similarly, each member h′ of a family HOR created from H by the OR-construction
combines b randomly chosen functions {h1, . . . , hb} ∈ H such that

h′(xA) = h′(xB) ⇐⇒ ∃ i ∈ {1, . . . , b} : hi(xA) = hi(xB). (6)

Because the basic functions {h1, . . . , hr} ∈ H used to build the members of HAND are
selected independently, HAND is, by construction, a (d1, d2, p

r
1 , p

r
2 )-sensitive family. Like-

wise, the functions {h1, . . . , hb} ∈ H used to create members of HOR are also chosen
independently; HOR is therefore (d1, d2, 1− (1− p1)b, 1− (1− p2)b)-sensitive by construc-
tion. The AND-construction therefore decreases the p1 and p2 probabilities of the family it
is based on, whereas the OR-construction increases them. A way of combining basic LSH
functions that is advocated for in the literature (Arnaiz-González et al., 2016; Leskovec
et al., 2020) consists in applying the OR-construction on a family obtained by means of
the AND-construction, which results in a (d1, d2, 1 − (1 − p r

1 )
b, 1 − (1 − p r

2 )
b)-sensitive

family. We refer to it as an AND-OR-construction.
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2.3 LSH-based dataset reduction

Our dataset reduction method has two main ingredients, namely: (i) an LSH function or
a combination of LSH functions capable of dividing a sample of size N into G buckets
that only contain “similar” observations; and (ii) a sampling strategy, applied within each
bucket to select an observation that is representative of the bucket. The G observations
selected in such way, together with the sizes N1, . . . , NG of the buckets they originate
from, constitute the outcome of our dataset reduction method. Any model of interest
may then be estimated on the obtained subsample rather than on the whole dataset by
using the log likelihood function of Eq. (2), where ig and xg now refer to the observed
choice and explanatory variables associated with the observation sampled from bucket g,
respectively.

We begin by discussing the sampling strategy. The current version of our model selects
one observation per bucket randomly, but more elaborate strategies may be used instead.
For instance, another valid strategy could consist in selecting all bucket medoids.

As regards the LSH-based clustering, the combination of functions employed by our
method is obtained by applying the AND-OR-construction—as defined at the end of
Section 2.2—on the family of basic functions given by

ha,b(x) =

⌊
a · x+ b

w

⌋
, (7)

where a is a vector with entries independently chosen from a normal distribution N (0, 1),
b is a real value chosen uniformly over [0, w], w is the bucket width and b · c denotes the
floor function. The family generated by Eq. (7) is known to be (w

2
, 2w, 1

2
, 1
3
)-sensitive

(Datar et al., 2004), which means that the AND-OR-construction generates a (w
2
, 2w, 1−

(1− (1
2
)r)b, 1− (1− (1

3
)r)b)-sensitive family.

The value of w is to be set by the analyst. It plays an important role in the clustering
process, as it indirectly controls for the degree of dissimilarity between observations within
a bucket: as the width of the buckets is increased, the total number of bucket decreases,
causing the average number of observations per bucket to rise. Two other important
parameters of the clustering process are r and b, i.e., the number of combined basic
functions in each AND-construction and the number of AND-constructions used in the
OR-construction, respectively. Finally, it is crucial that all explanatory variables are
normalized such that their values are between 0 and 1.
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3 Case study

We demonstrate the efficacy of our dataset reduction method by applying it to a real-world
mode choice dataset and using the obtained subsamples to estimate two multinomial logit
models. The quality of subsamples generated by our method is compared with random
subsamples of the same size. The comparison is based on four criteria, namely: (i) the
estimation time; (ii) the performance of the estimated models on out-of-sample data in
terms of log likelihood; (iii) the efficiency of the estimated model parameters, as measured
by the D-error; and (iv) the value of time for one of the alternatives, computed as the
ratio of the corresponding parameter estimates. All estimations are performed using the
Biogeme package for Python (Bierlaire, 2018, 2020) and are run on a 2.3 GHz 32-core
cluster node with 192 GB of RAM.

3.1 Dataset and models

All our experiments are based on the London Passenger Mode Choice (LPMC) dataset
(Hillel et al., 2018). The LPMC dataset consists of more than 81’000 trip records collected
over three years, combined with systematically matched trip trajectories alongside their
corresponding mode alternatives. Four modes are distinguished: walking, cycling, public
transport and driving. We divide the dataset into two parts: the first two years of data—
54’766 observations—are used for model estimation whilst the final year of data—26’320
observations— is set aside for out-of-sample validation.

The two considered multinomial logit models are borrowed from Hillel (2019). We refer to
the smallest of the two as Model 1: it includes, as explanatory variables, the travel time
and cost of all alternatives and the predicted traffic variability on the driving route. The
travel time of the public transport alternative is divided into access and egress time, rail
and bus in-vehicle times and interchange time, hence resulting in a total of 10 continuous
variables and 13 parameters.

Model 2 is far more complex: in addition to the same 10 continuous variables, the straight-
line distance between trip origin and destination is also considered, together with 15
dummy variables that encode socioeconomic characteristics of the individuals and context
variables. In total, Model 2 therefore includes 26 explanatory variables and 53 parameters
to be estimated.
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Figure 2: Results visualization for Model 1.
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3.2 Preliminary results

Fig. 2 shows the results obtained by applying our method on the LPMC dataset prior
to estimating Model 1. In each of the four subfigures, every cross represents a different
subsample obtained by means of the LSH-based dataset reduction technique, with r = 10,
b = 1. For each value of w ∈ {0.05, 0.10, 0.15, . . . , 0.50} the same experiment is repeated
100 times, which is the reason behind the “clusters” of crosses one can see in Fig. 2. For
the sake of comparison, the solid-color areas illustrate the results obtained by random
sampling. For each percentage of the original dataset size, 100 repetitions are performed.

The first subfigure illustrates the linear dependence between sample size and the resulting
computational burden of the model estimation process. This relation is verify both with
random subsamples and with subsamples generated by our method. The second subfigure
shows the normalized log likelihood yielded on the out-of-sample data by Model 1 when
trained on subsamples of the data. For high percentages of the original dataset size, our
method reaches values that are nearly identical to the median value obtained on the full
dataset. However, as the bucket width w grows, increasingly different observations are
hashed to the same buckets and more and more information contained in the original
dataset is lost. As a result, the performance of our method progressively deteriorates.
Hence, for percentages of the original dataset size lower than 40%, random sampling
seems to reach more consistent results than our method. The third subfigure illustrates
the relation between sample size and D-error. The latter is known to decrease at a rate
of 1√

N
as the the sample size N increase. Our method produces subsamples that yield a

D-error that is comparable to the one obtained on the full dataset because of the weights
associated with each observation in the subsample. The last subfigure shows the value
of time of the driving alternative, as estimated by models trained on subsamples of the
whole dataset. The same trend as with the out-of-sample log likelihood may be observed
here: provided the percentage of the original dataset size is above 40%, models estimated
on subsamples generated by our method display values of time that are close to the one
obtained by estimating Model 1 on the full dataset. However, as soon as the model is
estimated on smaller subsamples, the quality of the estimates deteriorates rapidly.

Fig. 3 shows that similar results are obtained for Model 2. Our method is applied in the
same conditions as for Model 1, except that r = 5 and w takes value in {0.1, 0.2, . . . , 1.0}.
A notable difference with the previous model is the smaller achieved reduction rate. This
is due to the fact that Model 2 includes 15 more variables than Model 1; those contribute
to reducing the number of identical and nearly identical observations in the dataset.
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Figure 3: Results visualization for Model 2.
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4 Conclusion

In this paper, we propose a dataset reduction method that allows for a faster estimation
of discrete choice models. The gain in computational time generally comes at the
cost of deteriorating the model estimation results; however, our method is specifically
designed to mitigate this deterioration by preserving as much diversity as possible among
the observations. The preliminary results presented in this paper are encouraging, in
that they confirm that a carefully selected and weighted subsample of observations is
capable of providing close-to-identical estimation results, while being, by definition, less
computationally demanding.

Intended future work includes the development and testing of alternative sampling strate-
gies for selecting observations from buckets. A more elaborate strategy could be used
instead, so as to increase the probability of being selected for observations that are truly
representative of their bucket. In a similar way, the basic LSH function considered in
our method is based on random vectors; additional investigation could therefore con-
sist in in developing more informed LSH functions, so as to make use of the analyst’s
knowledge of the dataset. Finally, another important direction of research consists in
extending our framework to models that include parameter segmentation. In such cases,
generating subsamples that capture the diversity among observations without distorting
the representativeness of the original dataset is a tedious task.
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