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Abstract 

In this paper we address the problem of predicting the crowding of urban public transport 

vehicles with a network-wide approach where more transit lines and their features are jointly 

considered. In particular, the aim is to investigate whether the real-time availability of the on-

board passenger countings can help to improve the quality of the short-term predictions made 

for the sections in advance, with respect to the predictions made only with historical data and 

current delays. To do so, a dataset related to the Zurich public transport network is considered, 

with a wide range of features including historical passenger countings, scheduled and real 

departure times, weather, scheduled and real connections and overlappings with other lines, day 

typology and holidays. We then add to this dataset features regarding the occupancy levels 

observed at the previous stops, which are then used in the performed experiments. To handle 

the large dimension of the dataset, predictions are made using an efficient gradient-boosted 

decision tree algorithm called LightGBM. 

Results show that real-time occupancies can help to make more accurate predictions up to 8/9 

stops in advance, even if a dependency on the stop position is observed. Results also show a 

negative effect of the most central stops, in particular the ones coinciding with important 

transfer points, on making predictions with data related to the sections located previously such 

stops. Moreover, the performed experiments can help understanding better the role some stops 

have in the public transport network. 
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1. Introduction 

With an ever-growing population and mobility demand in urban areas, public transport is more 

and more recognized as essential to limit traffic-related negative effects like the increase of 

emissions, noise, and traffic congestion. To guarantee its attractiveness, in addition to criteria 

like frequency of services, reliability, speed and number of transfers it is essential also the 

comfort perceived by the users, which is strictly related to the crowding of vehicles.  

Knowing in advance when and where a public transport network will be crowded can help 

passengers in planning and making their trip, allowing them to opt for a less crowded service if 

they wish. This is particularly feasible in complex urban public transport networks, where 

passengers have usually different alternatives in terms of lines and services (e.g., wait for the 

next service or for another line if it is less crowded), and will became more and more relevant 

in the future thanks to the expected increase and spread of flexible and remote working 

strategies (Yu et al., 2019), which give workers more freedom in deciding the commuting times, 

the commuting days and also where to work.  

Therefore, giving crowding information to the passengers is expected to result in a better 

distribution between them and the available lines and services, contributing in particular to a 

decrease in the occurrences of high crowding levels. These latter are indeed a major source of 

discomfort for the passengers, and can arise reliability problems like bus bunching (Drabicki et 

al., 2022) as well as sanitary problems like an increased spreading of Covid-19 during the recent 

pandemic outbreak (Thomas et al., 2022). Related to this latter aspect, recent studies have 

revealed a willingness of passengers to choose less crowded trips even if this implies longer 

travel times, and even to pay more for travelling in less crowded services (Marra et al., 2022; 

Shelat et al., 2022). 

Finally, knowing in advance the crowding levels can help the public transport provider to better 

manage the available resources and to introduce additional services when and if these are 

needed. 

1.1 Literature review 

Different studies have addressed the topic of predicting the number of passengers on public 

transport vehicles, showing the importance and the consideration for this research topic; they 

mainly differ in the type of data used and the prediction model employed.  

Many studies in literature make use of Smart Card data, which is available in a variety of large 

cities with metro lines (Xue et al., 2015; Ding et al., 2016; Zhang et al., 2017; Pereira et al., 

2015; Rodrigues et al., 2017). This type of data has the advantage of covering all trips, allowing 

to understand the movements of individual passengers such as transfers between lines and 
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origin-destination patterns. With Smart Cards it is also possible to consider the effect of 

different fares on the passenger travel choices.  

In addition to Smart Card data, Pereira et al., 2015 and Rodrigues et al., 2017 used data mining 

techniques to extract from the web context information about local events to forecast the 

number of passengers depending on the characteristics of an event. Similarly  to Rodrigues et 

al., 2017, Ni et al., 2016 adopted a similar approach to make predictions. In such a paper authors 

extract data of nearby events by scraping Twitter for hashtags corresponding to certain events. 

Historical data, Automatic Vehicle Location (AVL) and Automatic Passenger Counting (APC) 

data are instead used in Samaras et al., 2015 and in Jenelius, 2019 to predict passenger demand. 

The increasing large availability of mobile data has also provided new possibilities to explain 

and predict passenger numbers: Vandewiele et al., 2017 collected data from mobile phone 

surveys where passengers could indicate the perceived level of crowding during their trip. Due 

to the data source, the considered problem deals with classification and not with regression.  

As for the prediction framework, due to the cyclical component of commuting concerning the 

time of the day and the day of the week, most classical statistical prediction approaches have 

relied on time-series forecasting methods such as ARIMA and Kalman Filters (Ni et al., 2016; 

Xue et al., 2015; Zhang et al., 2017). 

More recently, research has shifted more towards Machine Learning and Deep-Learning 

techniques that can model the non-linearity and the feature interactions. While Rodrigues et al., 

2017, and Baek and Sohn, 2016, have successfully applied Neural Networks, Samaras et al., 

2015, Ding et al., 2016, and Vandewiele et al., 2017, have shown that Neural Networks were 

outperformed in their cases by tree-based algorithms like Random Forests and Gradient 

Boosted Decision Trees. 

Also Markov Chains have been proven to provide good results, since they can capture 

memoryless dependencies between the crowding of close (in time) public transport services 

(Więcek et al., 2019). 

In summary, the state of the art demonstrates the efficacy of different typologies of data and 

methods in predicting on-board passenger numbers, but they mainly focus on individual lines 

or routes. However, an extensive urban public transport network is a complex system, with a 

large variety of phenomena and events that can influence the on-board crowding: passengers 

often can choose between different lines, routes and modes of transport to reach their 

destination. In addition, the high frequency of services makes passengers flexible with their 

departure times. To cope with these issues, Jamar et al., 2020 proposed to model the possibility 

for passengers of taking multiple lines by adopting a prediction framework at a network level, 
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where both the line overlaps over a path and the different line arrivals at the stops are 

considered. In this paper we further develop this approach, by explicitly investigating, at a 

network level, the role real-time crowding information of vehicles has in influencing the 

crowding of such vehicles in the next sections of a given line.  

1.2 Making crowding predictions at a network level 

In Jamar et al., 2020, authors took as input a dataset related to the Zurich public transport 

network, which consisted of 10’785’072 rows each representing the number of passengers 

aboard a public transport vehicle (tram or bus) between two stops of the Zurich network from 

10/12/2017 to 09/12/2018. 

To investigate the usefulness of working at a network level, from the dataset authors created a 

number of features related to the overlapping between different lines (these latter defined as 

segments of a network served by more than one line, where users usually do not distinguish 

between the various lines); these features included the length of the overlaps, the lines and the 

stops involved in them, and the headway on the overlaps (resulting from all the lines serving 

the overlap). It is worth pointing out here that in this paper for working at a network level we 

do not mean simply making predictions for many lines of a network, but considering (as 

described above) the data related to the other lines of a network when making the predictions 

for a given line. 

To investigate the performance of predictions made several days in advance before the 

departures (long-term predictions), authors then developed two prediction models: the first one 

was built using only scheduled timetable data and historical passenger countings; the second 

one was instead built considering also real-time data like real departure times, delays and 

weather.  

From the comparison between a benchmark model (built from the historical average of the 

occupancy grouped by time, line and stop), the scheduled-time model and the real-time model, 

different observations where made: firstly, that making predictions at a network level allows to 

get more accurate results with respect to considering each line alone; secondly, that considering 

real-time data like current delays, real headways and real vehicle arrivals at the stops leads to 

an improvement of the predictions made, with respect to the ones made many days in advance, 

when this kind of information is not available. 

An important open issue left by the above described work is how to effectively use the real-

time passenger countings to improve the accuracy of the predictions made. Indeed, with the 

real-time measured passenger countings it is possible to compute, for a given line, time and 

section, the error between the real value and the value predicted by the proposed model. This 
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error can then be used to improve the predictions along the next sections of the line. However, 

it has been shown in such work that the error does not remain constant along the line; in other 

words, if the predicted crowding at a certain section differs from the observed one of a certain 

value, it is not possible to directly correct the predictions in the next sections with the found 

value, because after few stops this would worsen the predictions. Thus, a further investigation 

of the error behavior as well as its spatial and temporal propagation is needed.  

The goal of this paper is to start from the above mentioned results and present a strategy to 

implement the real-time passenger counting data coming from automated on-board 

measurements, and to determine whether this kind of data can be useful to improve the quality 

of short-term predictions. In other words, once a certain number of passengers is observed on a 

section at a certain time and for a certain line, the goal is the one of using it to improve the 

quality of the predictions made with the real-time model described above, which, in the 

following, will be addressed as base model. The related base scenario is therefore the one where 

no information on real-time crowding at previous sections is supposed to be available and 

predictions are made only with historical data and current delays. 

2. Methodology 

In this section we describe the dataset used, the followed procedure to add the real-time 

crowding information to it, and the Machine Learning model chosen to make the prediction of 

the occupancies.  

Since the aim is the one of having the lowest root mean square error (RMSE) possible, this 

metric will be used to address the quality of the occupancy predictions (number of passengers 

on board in each section of a public transport service). Furthermore, to simulate the application 

of the considered methodology in a real case where information must be provided to the 

passengers, we consider three occupancy levels for which computing the discrete accuracy 

(percentage of correct classifications): low, when the occupancy is less than the half of the 

seating capacity of the vehicle (each passenger has one seat for himself and another one for his 

belongings); medium, when the occupancy is less than the seating capacity (each passenger has 

at least one seat for himself); high, when the occupancy is greater that the seating capacity 

(some passengers have to stand). 

2.1 Data 

The considered dataset consists of a fraction of the one used by Jamar et al., 2020, where only 

the tram lines of the Zurich network are considered. The dataset is the result of the merging of 

four different types of data: 
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- Passenger boardings and alightings per stop; 

- Scheduled and real departure times; 

- Weather; 

- Holidays. 

Fig.1 shows the merging steps performed to build the dataset. 

 

Figure 1: Data aggregation performed to build the considered dataset 

 

To simulate the conditions for the base scenario, several network features were then added to 

the merged dataset: the most important ones are the overlaps between lines, the scheduled and 

the real headway on a corridor served by more lines, and the last lines arrived at the stop. 

2.2 Modeling real-time crowding information at previous stops 

To simulate the availability of the real-time occupancy in the sections located prior a public 

transport stop for which occupancy predictions must be made, we performed different 

experiments; in each experiment we added to each row of the original dataset described in Sec. 

2.1 one or more features representing the measured real-time occupancy on the vehicle in the 

sections located a certain number N of stops away from the stop i, which is the one for which 

predictions must be made. In this way, by comparing the results of the different experiments, it 

is possible to investigate the efficacy of this kind of data in enhancing the quality of the 

predictions. In particular, by comparing the quality of the predictions made with the real 

occupancy measured at different stops away, it is possible to see how far the real-time 

occupancy can influence the occupancy in the following sections, and thus how far this kind of 

data can be used to improve the quality of the predictions made.  
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Fig. 2 shows graphically the considered framework: to make predictions at the stop i, the real-

time occupancy at the N-th stop away is added as an additional feature to the dataset. This 

operation is done for each stop in the dataset apart from the first ones, for which this kind of 

data is not yet available. 

Figure 2: Scheme of the considered framework to make predictions with the real-time 

occupancy observed N stops before. 

 

To investigate whether knowing the real-time occupancy in more than one consecutive section 

can improve the quality of the predictions, we performed some experiments where we added to 

each row of the original dataset more than one measured occupancy in the past consecutive 

sections (see Fig. 3). 

Figure 3: Scheme of the considered framework to make predictions with the real-time 

occupancy observed in some consecutive segments, the last one of them located N stops before. 

 

The main aim of such experiments is to investigate whether the crowding on the future sections 

of a line depends only on the last observed occupancy or also on the past observations; in other 

words, whether the Markovian memoryless property holds.  

2.3 Prediction model 

To make the occupancy predictions for each of the considered experiments, we make use of the 

LightGBM algorithm, which is an improved version with high efficiency of the Gradient 

Boosted Decision Tree algorithm (Ke et al., 2017). The reason of such a choice lies into the fact 

that this model already provided good results for a similar dataset, compared with other popular 
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Machine Learning methods like Generalized Linear Models, Support Vector Machines, and 

Neural Networks (Jamar et al., 2020). Compared to Support Vector Machines and Neural 

Networks, tree-based algorithms like LightGBM do not require any preprocessing such as 

scaling, and the use of bagging or boosting procedures make these algorithms robust when 

handling co-linear features and features with low importance.  

The tuning of the model parameters, like the number of leaves and the fraction of features used 

at each boosting round, was done by means of an exact grid search. The final considered 

parameter values for the base scenario are: 17282 as the number of iterations; 0.95 as feature 

fraction; 25 as number of leaves; 0.2 as learning rate. 

3. Results 

All the experiments have been performed with the software R using the library LightGBM for 

the predictions. 

In this section we present and discuss the main results obtained for the lines 7 and 11 (Fig. 4), 

two of the most crowded tram lines of the Zurich public transport network. All the other tram 

lines were considered when building the overlap features as described in Sec. 1.2. Both these 

two lines start their trip in the outskirts of the city and cross the city center for ending their trip 

in another outskirt area. During the central portion of the trip these lines cross important streets 

and interchange stations between other lines. They also cross the main railway station of the 

city (Zurich HB). All the 30 stops of line 7 and the relevant 29 sections between them are shown 

in Fig. 5, while all  the 34 stops of the line 11 and the relevant 33 sections are show in Fig. 6. 

Figure 4: Path of the lines 7 (black) and 11 (green) of the Zurich public transport network with 

indication of the direction of travel and of the four stops considered in the experiments 

described in Sec. 3.2. 
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Figure 5: Stops of the line 7 of the Zurich public transport network in the considered direction 

of travel. 

 

Figure 6: Stops of the line 11 of the Zurich public transport network in the considered direction 

of travel. 

 

 

As for line 11, Fig. 7 shows the histogram of the occupancy values. The minimum measured 

value is 0, the maximum is 231 and the average is 36. The most frequent vehicle used (Cobra 

tram) has 90 seats and a capacity of 220 passengers. 

Figure 7: Histogram of the measured occupancy values for line 11. The colored rectangles 

indicate the low (green), medium (orange) and high (red) occupancy level ranges considering 

the capacity of the most common vehicle used on the line. 

 

Fig. 8 shows instead the heatmap of the average occupancy level in a normal working day as a 

function of the section (x axis) and the time (y axis) of the day (15-minutes intervals): it emerges 

that the average occupancy is always low in the peripheral sections of the line, when it travels 

in the outskirts, while the occupancy is usually higher in the central sections. In particular there 

is a peak in the occupancy level in the afternoon, indicatively from 16 pm to 18 pm in some 

central sections; their intermittency can be explained by pointing out that the first two peaks of 

high occupancy (A and B) spatially end at two stops which are important transfer points with 

other lines and, in particular, with other train lines  (Zurich, Bahnhof Stadelhofen and Zurich, 

Bahnhofstr./HB, respectively), so it can be assumed that many passengers get off the tram to 
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take other lines and trains. A similar conclusion can be done to explain the transition from 

medium to low occupancy (D), which almost always takes place after the stop of Zurich, 

Bahnhof Oerlikon, other important transfer point with trains. The third peak (C) of high 

occupancy ends instead when the line has already crossed the center and the number of 

passengers onboard starts, globally, to decrease.  

Figure 8: heatmap of the average occupancy level per section and time of line 11 during a 

working day. 

 

As for line 7, Fig. 9 shows the histogram of the occupancy values. The minimum measured 

value is 0, the maximum is 238 and the average is 39. The most frequent vehicle used (Tram 

2000 Sanfte with pony) has 101 seats and a capacity of 253 passengers. 
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Figure 9: Histogram of the measured occupancy values for line 7. The colored rectangles 

indicate the low (green), medium (orange) and high (red) occupancy level ranges considering 

the capacity of the most common vehicle used on the line. 

  

As for the occupancy level, Fig. 10 shows that, differently from line 11, line 7 has a peak in the 

occupancy level also in the morning (A) in the sections directed towards the city center, while  

Figure 10: heatmap of the average occupancy level per section and time of line 7 during a 

working day. 
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the afternoon peak (B) is spatially more concentrated than the one observed for line 11, and it 

is located in the most central sections of the line. In particular, it starts from the stops Zurich, 

Tunnelstrasse and Zurich, Stockerstrasse (the first central stops of the line) and ends at the stop 

of Zurich, Bahnofstrasse/HB, the stop located in front of the main railway station. 

To understand the potential of using real-time occupancies at previous stops in improving the 

quality of predictions, we first present results obtained for all the stops of the two lines except 

from the first 8 (since, for them, no observations at previous sections can be available).  

3.1 Line-level perspective 

In this section we compare the results obtained in the different experiments we performed on 

line 7 and line 11, without distinguishing between the stops or their position along the line. 

Since the base model, which is the one representing the scenario where the information about 

real-time crowding is not available at neither of the previous stops, has more difficulties in 

predicting the high occupancies rather than the low occupancies (as it can be seen in Tab. 1, 

which shows the confusion matrix for the predictions made for line 11 with the base model), 

we focus in this section on the afternoon times (16-19 pm) of a working day, because in such 

period the majority of high occupancy levels is observed. 

Table 1: Confusion matrix of the predictions for line 11 made in the base scenario (no 

information on previous stops available) 

 Predicted occupancy level 

Real occupancy level Low Medium High 

Low 77% 23% 0% 

Medium 6% 89% 5% 

High 1% 50% 49% 

 

Tab.2 shows the RMSE of the predicted occupancy (continuous values) and the accuracy 

(percentage of correct classifications) of the predicted occupancy level (discrete values) for 

different experiments. The first one, with no additional features created, represents the base 

scenario with no information available regarding the occupancy at previous stops. 

By looking at the other rows of the table, it is possible to see that the knowledge of the real-

time occupancy observed in the previous stops improves the quality of the predictions. In 

particular, and as expected, the closer the observed occupancy is to the stop at which predictions 

are made, the more accurate the predictions are, both in terms of RMSE and accuracy. For 
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instance, knowing the real-time occupancy on the vehicle can improve the accuracy of the 

predictions made 5 stops in advance up to 4%, and reduce the RMSE up to 10%. 

Table 2: Accuracies of predictions for line 7 and 11  

Added features RMSE 

(line 7) 

Accuracy [%] 

(line 7) 

RMSE 

(line 11) 

Accuracy [%] 

(line 11) 

None 14.78 0.79 15.34 0.78 

Measured occupancy 8 stops before 14.33 0.80 14.36 0.80 

Measured occupancy 7 stops before 14.18 0.80 14.23 0.80 

Measured occupancy 6 stops before 14.01 0.81 13.97 0.81 

Measured occupancy 5 stops before 13.85 0.82 13.86 0.82 

Measured occupancy 4 stops before 13.37 0.83 13.25 0.82 

Measured occupancy 3 stops before 12.58 0.84 12.79 0.83 

Measured occupancy 2 stops before 11.39 0.86 11.52 0.85 

Measured occupancy 1 stops before 9.48 0.89 9.59 0.88 

 

To investigate whether knowing the observations of the occupancy in many previous stops after 

the last observed one can provide better results than just knowing the occupancy observed at 

only a single previous stop, we then performed different experiments by adding more than one 

observed occupancy in the previous sections. Tabs. 3, 4 and 5 show the results. 

Table 3: Accuracies of predictions for line 7 - multiple observations from 5 stops before and 

backward 

Added features RMSE Accuracy [%] 

Measured occupancy 5 stops before 13.85 0.82 

Measured occupancy 5 and 6 stops before 13.82 0.82 

Measured occupancy 5, 6 and 7 stops before 13.83 0.82 

Measured occupancy 5, 6, 7 and 8 stops before 13.92 0.82 

 

Table 4: Accuracies of predictions for line 11 – multiple observations from 2 stops before and 

backward 

Added features RMSE Accuracy [%] 

Measured occupancy 2 stops before 11.52 0.85 

Measured occupancy 2 and 3 stops before 11.60 0.85 

Measured occupancy 2, 3 and 4 stops before 11.58 0.85 
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Table 5: Accuracies of predictions for line 11 - multiple observations from 5 stops before and 

backward 

Added features RMSE Accuracy [%] 

Measured occupancy 5 stops before 13.26 0.82 

Measured occupancy 5 and 6 stops before 13.07 0.82 

Measured occupancy 5, 6 and 7 stops before 13.07 0.82 

Measured occupancy 5, 6, 7 and 8 stops before 13.15 0.82 

 

As it can be seen, the RMSE and the accuracy are not significantly improved by the additional 

features, and it seems the knowledge of only the last available measured occupancy is sufficient 

to improve the predictions, which seem to be independent on the past observations. As a result, 

in the following section we will not use these additional features anymore in the experiments.  

3.2 Stop-level perspective 

From Sec. 3.1 it emerges that real-time measurements can improve the quality of the predictions 

at a line level. However, the Zurich tram lines usually have many transfer points and cross 

several central sections of the Zurich Network. For this reason, the aim of this section is to 

present and discuss the results obtained by focusing on some specific stops, to investigate 

possible spatial differences that can be present in the results. In particular, we focus on three 

stops of the line 11 and on one stop of the line 7. 

The first considered stop is Zurich, Rennweg. It is one of the most central stops, located in the 

Bahnhofstrasse, an important central street of Zurich with many demand attractors and overlaps 

between other tram lines. From Tab. 6 it is possible to see that at this stop the base model 

already performs better than the average (first line of Tab. 2). All the stops used for the 

observation of the real-time occupancy are located in the city center; for this reason it is not 

useful to make use of the real-time information on crowding for more than 5 stops away, due 

to the large variety of uncertain events that can happen in these zones of the city. 

Table 6: Accuracies of predictions for line 11 at the stop Zurich, Rennweg 

Added features RMSE Accuracy [%] 

None 13.98 0.82 

Measured occupancy 5 stops before (Zurich, Bahnhof Stadelhofen) 13.26 0.83 

Measured occupancy 4 stops before (Zurich, Bellevue) 12.08 0.84 

Measured occupancy 3 stops before (Zurich, Burkliplatz) 11.13 0.85 

Measured occupancy 2 stops before (Zurich, Kantonalbank) 10.64 0.86 

Measured occupancy 1 stops before (Zurich, Paradeplatz) 8.79 0.89 
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The second considered stop is Zurich, Stampfenbachplatz. This is the first stop after the stop 

located in front of the main railway station, and the first one after the most central sections. 

From Tab. 7 it is possible to see here a different behavior with respect to the one observed at 

Zurich Rennweg. Firstly, the performance of the base model is significantly worse. Secondly, 

there is a big increase in the accuracy (and a drop in the RMSE) for the last two experiments, 

and in particular for the last one. This can be explained by the large variety of events than can 

happen in the proximity of the main railway station (arrival of trains, transfer between other 

lines, …). In other words, the two stops near the main railway stations act as a ‘barrier’ that 

makes it difficult to predict what will happen after them using data related to sections before 

them. Once passed this barrier, the predictions suddenly get better. A spatial dependency of the 

effectiveness of real-time observations in improving the quality of the predictions has been 

observed also in the prediction of delays (Buchel and Corman, 2022). 

Table 7: Accuracies of predictions for line 11 at the stop Zurich, Stampfenbachplatz 

Added features RMSE Accuracy [%] 

None 13.52 0.77 

Measured occupancy 5 stops before (Zurich, Kantonalbank) 12.77 0.78 

Measured occupancy 4 stops before (Zurich, Paradeplatz) 12.67 0.78 

Measured occupancy 3 stops before (Zurich, Rennweg ) 12.43 0.79 

Measured occupancy 2 stops before (Zurich, Bahnhofstr./HB) 10.12 0.83 

Measured occupancy 1 stops before (Zurich, Bahnhofquai/HB) 5.86 0.90 

 

The third considered stop is Zurich, Laubiweg. This stop was chosen as representative of the 

stops located sufficiently far from the central sections of the line. From the results shown in 

Tab. 8, it can be seen that for this stop the predictions of the base model can be enhanced using 

data up to 8 stops in advance. Also in this case it is observable the effect of the stops next to the 

main railway station, after whom there is the most important increase in the accuracy of 

predictions. 

Table 8: Accuracies of predictions for line 11 at the stop Zurich, Laubiweg 

Added features RMSE Accuracy [%] 

None 12.59 0.80 

Measured occupancy 8 stops before (Zurich, Paradeplatz) 11.67 0.81 

Measured occupancy 7 stops before (Zurich, Rennweg) 11.70 0.82 

Measured occupancy 6 stops before (Zurich, Bahnhofstr./HB) 10.13 0.82 

Measured occupancy 5 stops before (Zurich, Bahnhofquai/HB) 8.37 0.85 

Measured occupancy 4 stops before (Zurich, Stampfenbachplatz) 8.03 0.86 
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Measured occupancy 3 stops before (Zurich, Beckenhof) 7.85 0.87 

Measured occupancy 2 stops before (Zurich, Kronenstr.) 6.97 0.89 

Measured occupancy 1 stops before (Zurich, Schaffhauserplatz) 4.91 0.91 

 

The last considered stop is Zurich, Bahnhof Enge, which is one of the first central stop of line 

7 in the direction of the city center. From Tab. 9 it can be seen in this case that the gain in the 

accuracy and the decrease of the RMSE is more constant, due to the lack of important transfer 

points in this portion of the line. In addition, the real-time crowding information can be 

exploited up to 8 stops backward to increase the quality of the predictions. 

 

Table 9: Accuracies of predictions for line 7 at the stop Zurich, Bahnhof Enge 

Added features RMSE Accuracy [%] 

None 15.60 0.79 

Measured occupancy 8 stops before (Zurich, Wollishoferplatz) 14.24 0.80 

Measured occupancy 7 stops before (Zurich, Butzenstr.) 13.86 0.82 

Measured occupancy 6 stops before (Zurich, Morgental) 13.01 0.82 

Measured occupancy 5 stops before (Zurich, Post Wollishofen) 12.35 0.84 

Measured occupancy 4 stops before (Zurich, Bhf. Wollishofen) 12.08 0.85 

Measured occupancy 3 stops before (Zurich, Billoweg) 11.57 0.85 

Measured occupancy 2 stops before (Zurich, Brunaustr.) 10.58 0.85 

Measured occupancy 1 stops before (Zurich, Museum Rietberg) 9.66 0.86 

 

4. Conclusions and future research directions 

In this work we implement real-time crowding information in a network-level prediction 

framework, and we analyze the effectiveness of using such kind of data in improving the 

accuracy of the predictions. Results allow to conclude that real-time observations can be used 

to significantly improve the predictions made for a vehicle on the sections in advance, but this 

improvement progressively decays when increasing the distance between the observed stop and 

the stop at which the prediction is made. Moreover, spatial dependencies are observed, since 

the position on the line of the observed stop and of the predicted stop has an influence on the 

quality of the results. In general, real-time information is less useful when there are important 

transfer points or demand attractors between the observed stop and the predicted one; as a 

matter of fact, these points introduce more sources of uncertainties related to all the possible 

events which may happen in the proximity of them.  
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We also find that predictions are not influenced by the past observations once the crowding 

level at a certain stop is observed. This memoryless property could be exploited in the future 

paving the way for including Markovian Chains or Markovian Fields in the prediction 

framework. 

Further directions of the proposed approach include a specific investigation of the spatial 

relationships between neighbor stops, an investigation of the role crowding information related 

to past services can have on the quality of the predictions, a deeper modeling of the overlaps 

between lines and the study of other prediction models. 
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