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Abstract

Existing epidemiological models analyze the transmission of infectious diseases considering
a perfect homogenous population. However, the COVID-19 emergency has shown the
importance of considering activity-travel behavior when studying the spreading of the virus.
With increasing epidemiological data available, and the outburst on agent-based activity
models, we can move beyond aggregation and start including individual features. To the
best of the authors knowledge, this is the most in-depth study of how socio-economic
and virological features impact the spreading of COVID-19 to date. We use chronological
data from the Federal Office of Public Health (FOPH) from mid-February 2020 to mid-
September 2021. We derive the influence of socio-economic characteristics with a novel semi-
disaggregated SIRD model, obtaining the total number of infections per specific group of
the population sharing pre-determined features. Finally, we validate our model with Google
data and compute the reinfection rate by applying non-pharmaceutical interventions. Five
features, including information about the individual and the municipality, have a ≥ 95%
probability of being correlated with the endogenous variable of positive testing for COVID-
19. In addition, we find that certain variables, including age or the population density
per square meter, remain representative for all waves, whereas others, like household
income, are dependent on the epidemiological wave studied. Our results suggest a strong
dependency on individual and municipality characteristics and the force of infection of
COVID-19.
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1 Introduction

Since the 18th century, epidemiological models are used to study the spread of infectious
diseases (see Heyde and Seneta, 2001). However, models that include activity-travel
behavior and disease spreading are much more new to the scientific community. COVID-
19 represents a turning point in the history of transportation and epidemiological research
for two main reasons: the magnitude of the pandemic and the amount of data collected
during its evolution. This situation has revealed the lack of literature that combines
the epidemiological field with public transportation planning. According to Tirachini
and Cats (2020); Douglas et al. (2020), human mobility is one of the main causes of the
spread of COVID-19. Therefore, coupling mobility and epidemiological data can provide a
better spreading model and flexibility when addressing an epidemiological crisis. Mobility
information is of fundamental importance for planning Non-Pharmaceutical Interventions
(NPIs), including public transportation logistics and the partial restriction of people’s
daily activities (see Tirachini and Cats, 2020; Douglas et al., 2020; Zheng et al., 2020; Lee
and You, 2020) during and after an epidemic crisis.

For this reason, we propose a model that addresses the subject at a disaggregate level.
To understand human mobility, we need to capture the heterogeneity of behavior in the
population, not only in the mobility model but also inside the epidemiological model.
Capturing heterogeneity allows for determining the influence of activity-travel behavior
on mortality rates and the efficacy of restrictions on specific activities. Concerning the
influence of individual characteristics on the spread, while the impact of the vaccination
status is rather clear, multiple authors (see Singu et al., 2020; Oertelt-Prigione, 2020)
state the importance of other socio-economic characteristics like age or income. Also, Riou
et al. (2021c) presents the correlation between positive SARS-CoV-2 tests, mortality rates,
and admission to intensive care with the SocioEconomic Position (SEP). In European
Institute for Gender Equality (2021) they state that 76% of health workers in Europe
are women. For this reason, studies like Oertelt-Prigione (2020) consider factors such as
gender, exposure to the virus, symptoms, and health care information. Also, in Klein and
Flanagan (2016) we find the potential different immune responses according to biological
characteristics. It is important to include variables in the epidemiological model that
capture the heterogeneity of the population’s behavior. In Qian and Ukkusuri (2021a) they
point out the two main challenges when using activity-based models: (i) mobility clusters
the population to the locations of their activities which leads to contact and contagion
(ii) to account for heterogeneity, we need to take into account additional assumptions. For
this reason, we aim to address the following limitations found in the existing literature:
(i) to define a clear methodology that establishes which variables are meaningful inside an
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epidemiological model, for example income or residence place (Chang et al., 2021a) (ii) to
overcome the issue of adding aggregated parameters inside agent-based models due to the
lack of data (Tuomisto et al., 2020), (iii) to avoid the use of real-time data-driven analysis
in order to define more targeted and less disruptive interventions (Aleta et al., 2020), and
(iv) to make the probabilities of transmission time dependant, since an early adoption can
potentially allow to contain the epidemics (Mancastroppa et al., 2020a)

Therefore, this paper’s scope is firstly to demonstrate the added value of using disaggregate
models for modelling SARS-CoV-2 spreading. Secondly, to describe the preliminary con-
siderations and define a model that accounts for virological and socio-economic variables.
And finally, to evaluate the potential of this model to study SARS-CoV-2 policy decision
making. For this task, we employ score matching causal inference combined with gener-
alised multivariate regression model to compute the probability of infection depending on
the socio-economic characteristics of the individuals. This method is especially fitting since
it incorporates the population heterogeneity and their behavior and contact patterns.

2 Literature review

2.1 Epidemiological models

In epidemiology, SIR models (Susceptible-Infectious-Recovered) have been widely used to
study the spread of multiple diseases (see Choisy et al., 2007). These models divide the
population into three groups: Susceptible, Infected and Recovered individuals. Susceptible
individuals are not infected and do not present any immunity or resistance to the disease.
Infected individuals remain in this state for a certain amount of time and may contaminate
others. Recovered individuals are usually considered immune to the disease. This group
usually also includes deceased people. In the literature, most of the works that study
the COVID-19 outbreak from the perspective of mobility use an adapted version of the
SIR, mainly the SEIR model (see Chang et al., 2021b; Aleta et al., 2020; Müller et al.,
2020; Qian and Ukkusuri, 2021b; Tuomisto et al., 2020). The SEIR model integrates
the SIR model with an ’Exposed’ state to consider individuals already infected but
cannot contaminate others yet. A further step is taken in Aleta et al. (2020), where
pre-symptomatic, symptomatic, or asymptomatic states are considered. Müller et al.
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(2020) refines this model by splitting the Infectious state into four sub-states representing
four levels of increasing symptoms severity (pre/asymptomatic, symptomatic, seriously
sick, critical). Moreover, Lemaitre et al. (2020b); Tuomisto et al. (2020) use a single
Infectious state but instead includes states indicating if the patient is hospitalized or in the
Intensive Care Unit (ICU). Both Lemaitre et al. (2020b) and Tuomisto et al. (2020) also
separate recovered and deceased patients, as the average duration of the hospitalization
differs between both cases.

2.2 Aggregated versus disaggregated models

2.2.1 Aggregated models

We define the aggregation of an epidemiological model as the level of detail with which
we compute the progression of the disease within the population. Fully aggregated SIR
models result in Equations (1)-(3), describing the evolution of the size of the Susceptible
S(t), Infected I(t) and Recovered R(t) compartments of the population as a function of
the time t (Choisy et al., 2007; Lemaitre et al., 2020b).

dS

dt
(t) = −λ(t)

I(t)

N
S(t) (1)

dI

dt
(t) = λ(t)

I(t)

N
S(t)− γI(t) (2)

dR

dt
(t) = γI(t). (3)

S(t)+I(t) +R(t) = N ∀t (4)

where N is the constant population size, λ(t) is the number of contacts per person per
unit of time and γ is the recovery rate. The dynamics of the spread depending on the
ratio:

R0 = λ/γ. (5)

We define R0 as the average number of new infections that individuals who carry the disease
cause in an early stage of the epidemic inside a susceptible population (see Diekmann and
Heesterbeek, 2000; Anderson and Mary, 1992). If R0 is smaller than 1, the number of
infected people decreases over time. This system of equations can be solved analytically to
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obtain the curve of the number of cases or prevalence of the disease over time (Lemaitre
et al., 2020b). The analysis of the equation system’s equilibrium yields the result stating
that the value R0 = 1 is the threshold defining whether an epidemic declines or grows
exponentially (Choisy et al., 2007). This parameter depends on the number of contacts
within the population and the probability of contagion during those contacts.

The main disadvantage of compartmental models lies in their assumption that compart-
ments are fully mixed. For this reason, they risk oversimplifying the problem by neglecting
’imperfect mixture’ such as heterogeneity in the population, contact patterns, and complex
behavior of individuals (see Soper, 1929).

2.2.2 Semi-aggregation: metapopulation models

A possible level of disaggregation consists in the formulation of metapopulation models, in
which the population is represented as a clustered network. Each cluster is a subpopulation
(groups) characterized by its number of individuals within each disease progression state.
While the subpopulations may exchange individuals and interact with one another, the
model does not consider interactions at the individual level within each group (Hackl and
Dubernet, 2019). The subpopulations are usually built on geographic and demographic
criteria: in Qian and Ukkusuri (2021b) New York City is divided into 15 zones that interact
via the various transportation systems. Interestingly, this study also considers separate
SEIR states for the populations commuting between two zones to precisely assess the
proportion of contagions that take place while traveling within the city. The subpopulations
can also depend on data availability: in Chang et al. (2021b) the individuals are aggregated
in Census Block Groups (CBGs), which makes it coherent with the demographic data from
the US Census as well as the mobility data. This type of semi-aggregated model already
allows for revealing inequalities in the outbreak prevalence across the subpopulations.

In conclusion, these models can capture the disease dynamics and compute the infection
evolution in disease outbreaks. However, they cannot analyze the contact between two
individuals nor the characteristics of the individuals interact. Moreover, they do not
leverage activity-based information, therefore neglecting the possible correlation between
the location of an individual and its potential interactions. Finally, precise network-based
modeling requires a high number of input variables, increasing the dimension of the
problem and resulting in computationally expensive calculations.
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2.2.3 Disaggregated / Agent-based models

The most advanced level of disaggregation is considering the population at the levels of
individuals. As each individual has its characteristics, actions, and interactions with the
others, they are often referred to as agents, and the resulting model is called Agent-based
(Hackl and Dubernet, 2019; Tuomisto et al., 2020; Aleta et al., 2020). Each agent is
characterized by a disease state at each time step and may contaminate or be contaminated
by the other agents with whom there is a contact. Just as the number of contacts and the
transmission rate need to be chosen or calibrated in aggregated SIR models (section 2.2.1),
an agent-based model heavily relies on the contact policy as well as the probability of
transmission. Smieszek (2009) demonstrates that redundant contacts (constant contacts
between the agents) tend to reduce the rate at which the disease spreads (lower R0). It
also supports the intuitive idea that the average number of contacts per time unit is
essential in determining the magnitude of the outbreak peak.

Agent-based models present many advantages as they represent a more realistic approach
to the problem of simulating an epidemic. Metapopulation models have the issue of
generalizing the behavior and faith of the individuals that cohexist within the same
subpopulation (Hackl and Dubernet, 2019). For example, a metapopulation model by
nature cannot simulate Super-spreading events where a single individual contaminates
many others. Agent-based models can reproduce those phenomena, and it is notably
among the main objectives in Aleta et al. (2020).They also allow studying the effect of
precise NPIs such as contact tracing, and individual quarantine (Tuomisto et al., 2020).

On the other hand, agent-based models are technically more challenging for two main
reasons: (i) their need for fine-grained data at the individual level in order to realistically
simulate contacts between the agents (this is linked to the mobility models which are
discussed in Subsection 2.3); (ii) the computational cost, as the interactions between
potentially hundreds of thousands of unique and varying agents need to be computed.
In addition, those models are usually stochastic (contrary to the basic aggregated SIR
model), which requires the model to be run for a significant amount of time (Chang et al.,
2021b; Hackl and Dubernet, 2019). This can be solved by optimizing and parallelizing
the calculations as in Chang et al. (2021b). Still, most studies limit the size to a specific
city, or a relatively limited sample of the real population (Müller et al., 2020; Hackl and
Dubernet, 2019; Tuomisto et al., 2020). All in all, these models are suited for describing
the heterogeneity of the population in terms of mobility. However, there is a lack of
contributions to defining heterogeneous populations in mobility and epidemiology
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2.3 Contact and mobility models

This subsection describes the methods used to simulate the contacts within a population,
which is a crucial aspect of any epidemiological model, as mentioned in Section 2.1.

2.3.1 Contact policies

Similar to the overall epidemiological model, the contacts policy used in a simulation
can be more or less aggregated. In the basic SIR model described in Choisy et al. (2007)
leading to equations 1-3, the contact policy is reduced to a single parameter β which is
the average number of contacts of a single person per unit of time. While simplifying the
simulation to allow for the system to be solved analytically, it ignores all differences in
behavior and activity between the individuals. An improvement of the scalar β is the
contact matrix: for a population that can be divided into m groups, we define a matrix of
size mxm such that Mij = βij where βij is the number of contacts per unit of time between
individuals from a group i and those from group j. In the case of a metapopulation model,
the contact matrix may indicate the contacts between the subpopulations.

Nonetheless, metapopulation or agent-based models are often based on a disaggregated
contact policy: at each timestep, the model computes which agent / which subpopulation
has been in contact with which others. A first method is to use a synthetic population and
arbitrarily decide on the contacts: in Smieszek (2009) each individual is put in contact
with n other random individuals, which may or not change throughout the simulation.
A similar policy is used in Mancastroppa et al. (2020b), with a crucial difference: each
node (individual) has an activity potential that influences the distribution of its number of
contacts and an attractiveness that calibrates its likelihood of being chosen as a contact.
This allows the author to study the impact of individual quarantine policies by adjusting
the activity potentials and attractivenesses of infectious agents.

What seems most realistic yet technically challenging are data-driven activity-based
contact models. Those rely on datasets that list the mobility of all individuals within
a population. This includes home locations and successive locations visited over a day,
including commuting. The type of activity performed is also indicated as it matters in
the number of contacts. Such datasets are used in Hackl and Dubernet (2019); Chang
et al. (2021b); Tuomisto et al. (2020); Müller et al. (2020); Aleta et al. (2020); Qian
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and Ukkusuri (2021b). In Qian and Ukkusuri (2021b); Hackl and Dubernet (2019) the
mobility data comes from a survey about the transportation system. In Aleta et al. (2020);
Chang et al. (2021b) it is obtained via Cuebiq and SafeGraph, respectively, two private
companies specialized in gathering mobility data, including via mobile phones. In Müller
et al. (2020) the authors indicate that their base mobility dataset stems from mobile
phones data too.

2.4 Relationship between infections and socio-economic and
demographic variables

This paper aims to show the advantages of adapting an aggregate model adapting a
disaggregate socio-economic and demographic data. Among the variables that may
influence the probability of transmission and contact policy are age, population density,
and income. Thus, a key component will be identifying which variables play a role by
correlating to the probability and force of infection. DuPre et al. (2021) studies the
correlations between socio-economic variables and COVID-19 cases and deaths trajectories
across 3,141 counties in the U.S.A. between January and June 2020. Their results show
that older median age, a 1% higher proportion of females, and a higher proportion of black
or Hispanic residents increased the probability of a surge in the number of cases in June
(when no lockdown was in place) as well as being in the worst-case scenario regarding the
number of cases. The same conclusions could be made regarding the correlation with the
deaths trajectory. According to the authors, these results reflect that black and Hispanic
workers are more likely to be employed in the industry as essential workers. Consequently,
those occupations offer fewer alternatives to reduce mobility and are more at risk as they
imply more close-up contacts (such as healthcare or transportation systems employees).

On the other hand, DuPre et al. (2021) shows that counties with a higher proportion
of individuals below the poverty level or without health insurance were less likely to be
among the counties experiencing the worst death trajectories. Besides, Sannigrahi et al.
(2020) studied the correlation between socio-demographic variables and COVID-19 cases
and fatalities across Europe. Their work identifies income, poverty, and total population
as critical variables in explaining the variance of the COVID-19 incidence. As mentioned
in Sannigrahi et al. (2020), the Ordinary Least Square regression does not capture the
spatial auto-correlation: two areas (e.g., European countries) that are close to each other
have a statistical tendency to have similar values. Thus the authors use spatial regression
models: Geographically Weighted Regression (GWR), Spatial Error Model (SEM), and
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Spatial Lag Model (SLM). The results show that the GWR captures better the relationship
between the variables and the number of cases and deaths than the OLS regression (R2

max

of 0.88 compared to 0.76).

In summary, epidemiological models are widely used to study the spread of infectious
diseases. Nonetheless, potential contributions can enrich the scientific community, bridging
the epidemiological and transportation fields. Specifically regarding the implementation
of a methodology that allows considering the fitting variables of the individual. After
including them in the infection probability as interpretable explanatory variables. This
level of disaggregation enables the study of activity-based information. Activity-based
information allows us to assess features like the correlation between the socio-economic
characteristics of the population and their transportation mode choice or provide insight
on how to plan for transportation of a city in a post-pandemic world. In other words,
these models are attractive in describing the heterogeneity of the population in terms of
mobility. However, there is a lack of contributions to defining heterogeneous populations
in mobility and epidemiology.

3 Methodology

Compartmental models, also known as SIR models, assume a uniformly distributed
population. We understand a uniformly distributed population as a population in which
all individuals are subject to the same infection risk per time step (Kelman, 1985).
However, in Riou et al. (2021a), it is established that population structure is critical when
accounting for COVID-19.

For this reason, we implement a semi-disaggregated SIRD model with an activity-based
approach. We establish the epidemiological disaggregation through the force of infection
λ(t) (see Equations (1)-(3)). Indeed, the latter is defined conditional to the belonging
portion g of the total population P and the pandemic spreading wave (w).

Figure 1 displays an overview of the workflow of our model:
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Figure 1: Model formulation diagram

Output

 Input
Ca =

g1/g1 g1/g2 g1/g... g1/gG

g2 /g2 g2 /g... g2 /gG

g.../g... g…/gG

gp /gG
a

Probability of Infection 
per individual 
P(infection)i,w

Probability of Infection 
given contact per 

individual 
P(infection|contact)i,w = βi,w

Probability of Infection 
given contact per group 

P(infection|contact)g,w = βg,w

Force of infection 

λg,w = ∑
a

Ca ⋅ βg,w

SIRD Model 

 

  

dSg

dt
(t) = − λg,w(t) Ig(t)T

Sg(t)
N

∂Ig

∂t
(t) = λg,w(t) Ig(t)T

Sg(t)
N

− γIg(t)
∂Rg

∂t
(t) = γIg(t)(1 − μ)

∂Dg

∂t
(t) = γμIg(t)

Matched Database

GLM  
Algorithm

Bayes 
Theorem Mean

Medical +  
Socio-Economic  

Information for every 
individual

Daily activity plan for 
every individual

Contact Matrices

Sg(t), Ig(t), Rg(t), Dg(t)

3.1 Input of the model

The two primary inputs required to run the model exposed in Figure 1 are the daily
activity plan for every individual and the medical and socio-economic characteristics of
every individual. To obtain the dataset, we propose to match the activities schedule of the
individuals and their medical information through some socio-economic characteristics.

To obtain the daily activity plan for every individual, we use agent-based modeling. ABM
is a system modeled as a collection of autonomous decision-making entities called agents.
Each agent individually assesses their situation and makes decisions based on rules. Agents
may execute various behaviors appropriate for the system they represent—for example,
producing, consuming, moving, and most importantly, interacting with other agents. We
use an activity model to produce the event files of each individual in our simulation. Its
use of dependency injection and agent-based modeling provides a fine-grained modular
framework. This information is completed by defining the different activities, such as
the transportation mode, leisure, home, errands, and work. Also, another file defines
the characteristics of the population, which is used for matching. Finally, we obtain the
schedule of each individual for every day.

The other input for the model is the medical information of the individual. Specifically,
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the requirements are information about the date the individual tested positive, vaccination
and hospitalization date and its socio-economic characteristics.

3.2 Activity specification

We define the contact matrix Ca in Equation (6), in order to encode the number of contacts
per time step between and among each group for every given activity a

Ca =


g1/g1 g1/g2 g1/g... g1/gG

g2/g2 g2/g... g2/gG

g.../g... g.../gG

gp/gG


a

∀a ∈ [1, A] (6)

where A is the total number of considered activities by the study and the term gi/gj is
to be interpreted as the number of contact between individuals of the groups gi and gj

∀i, j ∈ [1, G].

The contact matrix allows for accounting for information related to the contacts by type
of activity and by group g, which may have very different social behavior. Indeed, as
discussed in Section 2, different types of activities yield probabilities of infection that
differ in their likelihood and in how we prevent them. For example, places of recreation
are responsible for a higher proportion of infections than places of business (see Chang
et al., 2021c). They are also subject to different types of regulation (e.g., closure of
restaurants and bars or non-essential shops). Differentiating the contact matrix allows for
studying different public policies by directly modifying the number of contacts under a
particular policy, i.e., a compulsory "telework" measure would directly result in a work-
related contact matrix (Ca, where a = telework) close to zero, at least for teleworking
businesses.

3.3 Probability of infection βg,w

To define the probability of infection per group, we need to determine the explanatory
variable that will define the probability of infection for each individual. Therefore, we
estimate a regression function that will define the probability of infection for each individual.
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For this reason, we define and estimate the parameters that explain the P (infection)i,w for
each wave w and individual i. The two methods used are: (1) we find correlation through
multivariate logistic regression between the explanatory variables and the binary response
for testing positive for an individual i, and (2) we check for causality by implementing a
propensity score causal inference algorithm.

3.3.1 Probability of infection per individual

The probability of infection per individual is computed using a multivariate logistic
regression with a binary dependent variable. The variable we are interested in modeling is
an individual’s positive test, an indicator for whether an individual has been SARS-CoV-2
tested positive (infected = yes) or negative (infected = no). The regressors that ought
to have power in explaining whether an individual has been tested positive are their
socio-economic characteristics and the characteristics of the environment that surrounds
them.

This process involves the implementation of multivariate logistic regression and a match-
ing score causal inference method. The causal inference method aims to balance the
distribution of covariates in the treated and control groups. The regression has the
objective of finding the correlation between the probability of infection and the selected
explanatory variables. It is worth mentioning that matching methods should not be seen
in conflict with regression adjustment. The two methods are complementary and best
used in combination. We define the probability of infection per individual as:

P (infection)i,w ∼
M∑

m=1

(βm logXm,i + βp logXP,i) (7)

Where Xm are the socio-economic characteristics of the individual, Xp are aggregate
indicators of the surroundings, and βm and βp estimate the variable’s parameters. The
procedure to select the variables for the Generalized Linear Model Regression (GLM) is
detailed in Algorithm 1.
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Algorithm 1 Procedure for selecting variables for GLM regression
1: Split the dataset into 70% train and 30% test
2: Select all the variables from the list that we want to consider for the analysis
3: Compute the GLM algorithm
4: Compute the Variance Inflation Factor (VIF) for all the variables
5: if High p-value and high VIF then
6: Remove the variables with high p-value and high VIF
7: Refit the model (line 3)
8: else if all p-values and VIF values are accepted with 95% confidence then
9: Output the the result

10: end if

3.3.2 Probability of infection per group

Computing the probability of infection per individual βi,w allows us to define the prob-
ability of infection βg,w per group g and per wave w. To obtain βg,i, we first calculate
P (contact|infection) and P (contact) from an activity-based model output:

P (contact) =
total number of interactions in all facilites

total number of facilities
(8)

P (contact|infection) =
number of infected people in facilities ∗ total number of facilities

total number of people
(9)

This output contains the daily activity schedule of the individuals in the population. For
this reason, it is possible to compute statistics on the contacts inside the different facilities
and the characteristics of these encounters. To obtain the probability of infection, given
that there is contact between two individuals βi,w we apply the Bayes theorem (10):

βi,w = P (infection|contact) =
P (contact|infection)P (infection)

P (contact)
(10)

Aggregating the result for each group g we obtain:

βg,w = P (infection|contact)g,w =

∑
∀i∈g

βi,w

Ng

(11)
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where the term
∑
∀i∈g

indicates the sum for all the individuals i that belongs to the group g

and Ng is the total number of individuals that belong to the group g.

3.4 Force of infection (λg,w(t))

This paper aims to define the probability of infection of an individual given its socio-
economic characteristics and activity-travel behavior. Consequently, we compute the
activity contact matrices Ca together with the mean of the probability of infection given
contact per group (βg,w). As already mentioned, to obtain this parameter, we first model
the probability of infection given contact depending on the socio-economic characteristics
of the individual (βi,w)

λg,w(t) = βg,w ∗
A∑

a=1

Ca (12)

where λg,w(t) is the mean force of infection of all the individuals that belong to the same
group g for wave w. The entire process is summarized into Algorithm 2.

3.5 SIRD Model

The final step is to introduce λg,w(t) inside a SIRD model. For each segment of the
population (group g), characterized by a set of specific features, i.e., age, gender, income,
or municipality, we define the following Ordinary Differential Equations (ODEs):
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dSg

dt
(t) = −λg,w(t) Ig(t)

T Sg(t)

N
(13)

∂Ig
∂t

(t) = λg,w(t) Ig(t)
T Sg(t)

N
− γIg(t) (14)

∂Rg

∂t
(t) = γIg(t)(1− µ) (15)

∂Dg

∂t
(t) = γµIg(t) (16)

Where the terms S, I, R, D, N stand for the total susceptible, infectious, recovered, and
dead individuals, and the total number of individuals, respectively. The recovery rate (γ)
and the fatality rate (µ) are defined from the literature (see Lemaitre et al., 2020a). Note
that the periods considered for the waves are based on Roelens et al. (2021). The system
of ODEs (13)–(16) can be solved using the lsoda solver for ordinary differential equations
thanks to its ability to switch between stiff and non-stiff integration methods automatically.
This method allows for computing S, I, R, and D for each group g ∈ [1, . . . , G] where G

is the total number of groups that compose the population P . We compute it t times at
which explicit estimates for the output are desired.

Algorithm 2 Summary of the proposed methodology
Require: Dataset with individual information and smtg else
1: Execute Algorithm 1
2: Compute the contact matrices Ca for all the possible activities a ∈ [1, . . . , A]
3: for each pandemic wave w do
4: for each population group g do
5: for each individual i do
6: Compute the probability of infection per individual βi,w with Equation (7)
7: end for
8: Compute the probability of infection per group βg,w with Equation (11)
9: Compute the force of infection λg,w(t) with Equation (12)

10: Solve the system of ODEs (13)–(16)
11: end for
12: Output the model for each pandemic wave w
13: end for

It comes without saying that the above specification depends on the dataset available to
define P (infection)i,w. The dataset should include the characteristics of the individual
and virological attributes. Individual attributes can include age, gender, or income, and
virological attributes are the parameters like viral load, contact intensity, or ventilation
characteristics. However, segmenting the population into smaller groups results in a higher
dimension of the matrix Ca that can lead to higher computational cost. To the best of
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the authors’ knowledge, high-performance computing is required if more than 15 groups
of the population need to be taken into account.

4 Results

The study case used to validate the proposed approach relies on data concerning 5% of
the Swiss population. The segmentation of the population per group is based on the
individual’s age. We estimate the force of infection by including socio-economic variables
of the individuals and their daily activities. By capturing these two phenomena, we can
get information about the activity-travel behavior of the Swiss population. Specifically, it
allows to: (i) study the causality and the correlation of the probability that an individual
gets infected given its socio-economic characteristics, (ii) evaluate targeted policies by
including associated variables.

4.1 Data

Figure 2: Pre-process of the dataset

   Data Manipulation    Final Dataset Original Data

FOPH Dataset

MATsim OUTPUT

Municipality Dataset

Medical Data

Gender

Age

Plans File

Population Data

Age

Gender

Matching Algorithm Final  
Dataset

Individual Data

Gender

Age

Medical Data

Municipality

Tested Positive (Y/N)

Socioeconomic Status

Municipality Data

Municipality Information

Socioeconomic Status

Network
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The dataset requirements as an input for this model include activity and medical informa-
tion about the individuals as visible from Figure 1. Since there is no synthetic population
in the literature that includes all the needed features, we compute a matching algorithm
to combine different datasets (see Figure 2). The underlying reason is that we need to
account for each individual’s daily activities and socio-economic characteristics together
with their COVID-19 medical-related information.

Figure 3: Distribution of positives test a function of (from top left to bottom right): (i)
age, (ii) aggregated income per household, (iii) percentage of people per municipality
with an age between 20 and 65 years old, (iv) percentage of people per municipality with
an age over 65 years old, (v) population density per km2, (vi) location based on postcode,
(vii) type of municipality, (viii) availability of private means of transportation (i.e., car)
and (ix)natality rate.

We manipulate data from the Federal Office of Public Health (FOPH) from mid-February
2020 to mid-September 2021 (see Riou et al., 2021b). The dataset contains the positive
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tests in Switzerland, together with information about the tested individuals. It includes
information about the age, gender, municipality, vaccination doses, hospitalization, and if
they died. Moreover, we add open-source data (see Admin suisse, 2022) from the Swiss
municipalities. These variables per municipality include the median income, the social
security rate, the percentage of people working in the tourism sector, or population density
per square meter. We match the FOPH and the municipality data with a calibrated
MATSim simulation output from ETH Zurich (see Hörl and Balac, 2021). The final dataset
size is 400k individuals and is formed by three individual socio-economic characteristics
(sex, age, and municipality) and forty-one variables at the municipality level (see BFS,
2022).

Figure 3 plots the distribution of positive tests against different explanatory variables. We
observe that the distributions are not horizontal, reinforcing the assumption that these
variables are fitting to describe the correlation with the positive testing variable.

To further analyze the underlying reason for the outliers in the municipality aggregated
indicators, we compute a Principal Component Analysis (PCA) to reduce the explanatory
variables to 2 dimensions and a Gaussian Mixture Model (GMM) clustering to visualize
the clusters better and use them for further analysis. Figure 4 displays the two clusters:
Zurich (violet) and St. Gallen (green). The outliers of the municipality indicators are
reasonable since more individuals of the same municipality explain more counts in the
histogram. On the other hand, the individual-based indicators are almost uniformly
distributed. For this reason, we decide to test these variables as explanatory to compute
the probability of infection per individual.

In Figure 5, we merge the FOPH Data with the municipality data to plot the positive
tests in Switzerland. This analysis gives an overview of the disparities in infection in the
different municipalities, which makes these variables suitable to define the positive tests
of the individuals.
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Figure 4: Visualization of the clusters using the GMM algorithm. The figure from the
right adds a column in the analysis indicating if individuals live in Zurich, St-Gallens, or
some other municipality.

4.2 Activity contact matrix

As seen in subsection 3.4, the force of infection is a vector whose dimension depends
on the segmentation of the population. For our case of study, we stratify the model
into 4 age groups: PC which contains the individuals younger than 18 years old, PA1

individuals between 19 and 35 years-old, PA2 individuals between 36 and 55 years-old and
PE individuals over 56 years-old (G = PC , PA1, PA2, PE). The contact matrix Ca defined
in Equation 6 assumes the form visible in Table 1. This matrix encodes the number of
contacts between and among each age group per time step. In Figure 6, we can observe
the mean of contacts per activity between each age group.

Table 1: Contact matrix structure for each activitity

child (C) adult1 (A1) adult2 (A2) elderly (E)

child child / child child / adult1 child / adult2 child / elderly
adult1 - adult1 / adult1 adult1 / adult2 adult1 / elderly
adult2 - - adult2 / adult2 adult2 / elderly
elderly - - - elderly / elderly

For instance, C − C defines the contacts for each activity between the same age group
C. It is fascinating to observe that most contacts take place inside Education, where the
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Figure 5: Distribution of positive tests against their location in Switzerland, in addition
to some data concerning the municipalities to analyze(from top left to bottom right): (i)
the population density, (ii)the average size of the households per person,(iii) the rate
of persons receiving social financial aid, (iv) the percentage of people between 0 and 19
years old, (v) the percentage of people between 20 and 64 years old, (vi) the percentage
of people over 64 years old, (vii) the proportion of private housing, (viii) the number of
positive tests, and (ix) the number of positive tests per capita.

Figure 6: Mean contacts per activities and groups

number of people inside an education facility is very high for a long time (≈ eight hours).
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Figure 7: Mean contacts per activities and groups (Education excluded from the list of
activities)

To better visualize the contacts by activity and group, we delete the education activity
from Figure 6 and re-scale the y-axis, obtaining Figure 7. Here, we observe that the most
contacts among adults are during work time, for people under 18 during leisure activities,
and for elders during grocery shopping or inside a car. The activity per groups modularity
shapes our model to implement policies with high flexibility and dynamism for each age
group.

4.3 Parameter estimates

As previously mentioned, we want to: (i) determine the impact that the socio-economic
variables have on the probability of infection of an individual (P (infection)i,w), (ii) select
those variables and proceed with parameter elimination, (iii) estimate the parameters
to compute P (infection)i,w. To do so, Algorithm 1 is executed for both the first and
the second pandemic waves (2020-02-24 to 2020-04-30 and 2020-10-01 to 2021-02-14,
respectively). We compute the propensity score for both estimations by running a probit
model where the outcome variable is a binary variable indicating infection status, and
we verify the results with multiple logistic regression. The results reveal that the two
waves share a high correlation with the same set of variables, namely: the age of the
individual Λ, percentage of the population above 65 years old for a specific municipality
χ, percentage of the population between 20 and 65 years old for a specific municipality Υ

and population density per km κ, with the only exception for the income Φ, considerable
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as variable only for the second wave. Specifically, the analytic forms obtained as the
output of Algorithm 1 for the two waves are:

P (infection)i,1 ∼ βΛ log(Λ) + βχ log(χ) + βΥ log(Υ) + βκ log(κ). (17)

P (infection)i,2 ∼ βΛ log(Λ) + βχ log(χ) + βΥ log(Υ) + βκ log(κ) + βΦΦ. (18)

Table 2: Summary statistics of the list of covariates

1st WAVE 2nd WAVE

Stratified by infection 0 1 SMD 0 1 SMD

n 269642 414 281576 14499

Λ(mean(SD)) 44.42 (20.99) 50.91 (20.24) 0.315 44.43(21.05) 43.33(19.68) 0.054
Υ(mean(SD)) 3.89 (3.27) 65.17 (3.07) 0.0400 63.63(3.30) 63.91(3.25) 0.086
κ(mean(SD)) 2399.74 (1760.49) 3123.01 (1733.89) 0.414 2222.49(1771.15) 2401.70(1751.82) 0.102
χ(mean(SD)) 16.89 (2.50) 16.26 (2.29) 0.0264 17.04(2.56) 16.84(2.48) 0.077
Φ(mean(SD)) 0.02(0.13) 0.02(0.12) 0.002

In Table 2, we see in the control group 281576 subjects and the treated group 14499
subjects. First, we analyze the means and standard deviations of the different variables.
Secondly, we observe that the Standardized Mean Differences (SDM) are lower than 0.1,
which means that none of them are showing imbalance. Therefore, we can apply to match.
Finally, we compute a propensity score matching analysis and test for non-linearity for the
non-binary attributes. We find that the log-transformation reduces skewness and allows
us to fulfill the condition SMD ≲ 0.1 (see Table 3).

Table 3: Standardized Mean Difference for the list of variables

1st WAVE 2nd WAVE

Stratified by infection Means Treated Means Control SMD Means Treated Means Control SMD

distance 0.00200 0.00150 0.0523 0.0499 0.0499 -0.000

log Λ(mean(SD)) 3.835 3.646 0.0405 3.654 3.649 0.0104
log Υ(mean(SD)) 2.779 2.8160 0.0272 4.156 4.156 0.00210
log κ(mean(SD)) 4.176 4.156 0.0413 7.427 7.426 0.000700
χ(mean(SD)) 7.802 7.427 0.0467 2.813 2.814 -0.00240
log Φ(mean(SD)) 0.0159 0.0104 0.0436

In Table 3, we find the same list of variables as in Table 2. If we look at the SMD, we
observe very low values, so we can accept our matching results (see Table 5). Overall, the
variables have an outstanding balance as the standardized mean difference is never even
close to 0.1.

24



SARS-CoV-2 model for Switzerland May 12, 2022

Moreover, if we compute the algorithm to obtain the estimates of the explanatory variables
from Equations (17) and (18), we can observe that βΛ takes a positive value. This can
be explained by the fact that older people are more likely to test positive than children.
Nevertheless, it does not imply that mortality is lower. Also, it is interesting to see that
a more significant percentage of adults has a higher impact on infection than a more
significant percentage of the elderly population for the first wave. On the other hand, we
can observe a negative impact on the percentage of elderly and adults during the second
wave. The vaccination measures can explain this. Note that by the end of the first wave
(end of April 2020), 20% of the population was vaccinated. Lastly, as we obtain high
values for the SMD in multiple variables when including the income related variable Φ,
we can state that the latter is not representative of the first wave.

Table 4: Coefficients using Ordinary Least Squares (OLS) method using Least Squares

1st WAVE 2nd WAVE
Variable Est. SE z-val. p-val. Est. SE z-val. p-val.

log(Λ) 0.000800 0.000 6.264 0.000 0.00160 0.00100 2.359 0.0180
log(χ) 0.00170 0.00100 1.661 0.0970 -0.0197 0.00500 -3.918 0.000
log(Υ) 0.0105 0.00400 2.841 0.00500 -0.0800 0.0180 -4.424 0.000
log(κ) 0.000400 0.000 2.658 0.00800 0.00890 0.00100 13.988 0.000

Φ -0.00250 0.00100 -3.124 0.00200

Table 5: Coefficients using Matching score algorithm

1st WAVE 2nd WAVE
Variable Est. SE z-val. p-val. Est. SE z-val. p-val.

log(Λ) 0.641 0.101 6.321 2.590e− 10 0.0301 0.0143 2.100 0.0358
log(χ) 1.395 0.773 1.806 0.0701 -0.386 0.107 -3.608 0.000309
log(Υ) 7.388 2.893 2.554 0.0106 -2.0381 0.391 -5.211 1.880e− 07
log(κ) 0.281 0.109 2.594 0.00950 0.187 0.0141 13.246 < 2e− 16

Φ -0.0556 0.0261 -2.131 0.0331

4.4 Model fit

We initialize the discrete integration process (see Algorithm 2, lines 3 to 13) to obtain
the total number of cases per timestep per group of population. We test our model to
represent the infection dynamics observed during the COVID-19 pandemic. In particular,
the case study focuses on the first pandemic wave, therefore considering data from 2020-
02-24 to 2020-04-30. The choice of the time period object of study is supported by two
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(a) Results SIRD for GC (b) Results SIRD for GA1

(c) Results SIRD for GA2 (d) Results SIRD for GE

Figure 8: Infected population by age group for the first wave

main features that make it suitable to be studied by the proposed model: it has regular
social contacts, and the population is not yet vaccinated. Note that we set some activity
restrictions in the contact matrix Ca from mid-march to: (i) reduce the force of infection
(ii) fit the total number of cases from Google data (see Google, 2022). The evolution of
the Infected population are shown in Figure 8. In particular, Figures 8(a) to 8(d) show
the evolution for the 4 different age groups. Finally, we plot the number of cumulative
COVID-19 cases over the same period from the Google data in Figure 9, with the numbers
obtained by our epidemiological model initialized accordingly with the initial values of
infected individuals from official public data. By comparing the curves, we can state
that the developed model is able to capture the evolution of the positive cases with good
accuracy.
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Figure 9: Daily infection from google data for the first wave (blue line) against the
aggregated output of our model (red line).

4.5 Comparison with the state-of-the-art

For the sake of comparing the obtained results and assessing the quality of the proposed
disaggregation approach, we refer to Müller et al. (2020), where an age-dependent progres-
sion model from Episim is used. The probability for individual i become infected given its
contacts by this process in a time step t is described in Equation 19 as:

Pi,t = βEpisim
i,w = 1− exp

[
−θ

∑
m

qm,t.ciim,t · ini,t · τim,t

]
(19)

where m indicates an agent other than the studied agent i, θ is a calibration parameter, q
the shedding rate (microbial load), ciim the contact intensity between agent i and agent
m, in the intake (reduced, e.g., by a mask), and τim the duration of interaction between
the two individuals.

However, in Müller et al. (2020) they assume q = ci = in = 1 since none of these values
are known for COVID-19. We compute the force of infection per group using their
methodology and our dataset to compute the mean duration of interaction between the
two individuals τ , and the weights per age group to compute βEpisim

g,w . The results are
visible in Table 6. The first two columns show the parameters used by Episim in terms
of the probability of transitioning to contagious and developing symptoms. Since the
Episim model assumes q = ci = in = 1, the two columns are populated by the same values.
The third column indicates the probability of transitioning to contagious computed with
our dataset. This table shows that the Episim algorithm might not provide promising
results, especially for lower age groups, as their estimate differs from the real data. It
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is important to mention that the Episim model is run for a sample of individuals based
in Berlin, Germany, while the dataset refers to Switzerland. This might introduce some
deviation in the results but not justify the difference between Episim estimated data and
real measurements. As a direct consequence, the values of βEpisim

g,w and βg,w computed by
our model are very different, except for the older population group, where Episim uses a
more accurate P(contagious) values.

Table 6: Age-dependant progression model from Episim and comparison for the values of
the probabilities of infection given contact per age group

Age group PEpisimcontagious % PEpisimsymptoms % Weights βEpisim
g,w βg,w

0 to 9 0.1 0.1 22.3 0.034 0.3210 to 19 0.3 0.3

20 to 29 1.2 1.2 19.1 0.029 0.19

30 to 39 3.2 3.2
30.7 0.045 0.1440 to 49 4.9 4.9

50 to 59 10.2 10.2

60 to 69 16.6 16.6
27.5 0.042 0.0570 to 79 24.3 24.3

80 + 27.3 27.3

Since the MATSim scenario of Switzerland is not open source, we cannot compute the
scenario to compare the infection outputs. For this reason, we decide to use the reduction
of the reinfection rate as the parameter to compare to other studies as in Müller et al.
(2020). In their study, the reinfection rate is defined as:

R =
Reinfection cases with restriction

Reinfection cases with no restriction

Total number of individuals
(20)

To compute R, as discussed in Section 3.2, it is sufficient to set to zero elements of the
contact matrix Ca and run the model. The obtained results are shown in Table 7 and
compared to Brauner et al. (2020) Haug et al. (2020) and Müller et al. (2020), where it is
possible to observe that the results obtained with our disaggregated SIRD Model are in
line with the ones proposed by Brauner et al. (2020).

28



SARS-CoV-2 model for Switzerland May 12, 2022

Table 7: Percent reduction of R in Müller et al. (2020)

Measure Brauner et al. (2020) Haug et al. (2020) Disaggregated SIRD Model
Schools closed 50 16 38
Most businesses suspended 26 27
Work ban 34 36
Gatherings limited to ≤ 1000 16 19
Gatherings limited to ≤ 100 17 21
Gatherings limited to ≤ 10 28 32
Mass gathering cancellation ≥ 50 27 31
Small gathering cancellation ≤ 50 17 22
Event ban
Gathering ban
Venue closure
Stay-at-home order with exemptions 14 12

5 Conclusion

This paper describes the design and evaluation of a semi-disaggregated activity-based
model. We aim to create an interdisciplinary bridge between transportation and the
epidemiological community. The most significant contributions are: (i) we capture how the
socio-economic characteristics of an individual define the force of infection, (ii) we obtain
a self-explanatory model, defined by the estimates of the variables that characterize the
spreading event, and (iii) high goodness of fit of our model with Google data. Moreover,
the effortlessness with which the activities can be modified per population group makes
this tool fitting for testing activity restrictions policies. Concerning the performance
assessment of the model, the lack of individual data makes it very challenging to have
a rigorous analysis of how disaggregation performs in this kind of model. The main
reason is that we have to validate our model with aggregated data. Also, we cannot
examine the correlation between adding levels of disaggregation and the goodness of fit
with the real data. Furthermore, we have defined the population by age and classified
them into four groups. We believe it would be interesting to design policies by combined
socio-economic and/or activity parameters and allocate the population to them. This
multiple categorization will allow for dynamically testing policies. Moreover, this model is
suited to work together with an optimization algorithm. However, this extension is out of
the scope of this paper.

Future works might include: (i) developing and adding an optimization tool extension to the
model. This will allow us to explore different policy strategies and their efficiency. Secondly,
(ii) extent the model to the different COVID-19 variants to evaluate its performance and
consider the methodology for other non-vector-borne diseases.
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