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Abstract 

Vision-based analysis of traffic has become essential for Intelligent Transportation Systems 

(ITS) due to the wide variety of applications such as traffic congestion detection, traffic 

anomaly detection, and travel time prediction. While the most common monitoring traffic 

methods are based on fixed road monitoring cameras, unmanned aerial vehicles (UAV) have 

advantages such as broader vision, flexibility, and cost-efficiency compared with fixed road 

cameras. UAV-based traffic analysis is useful, especially for the macroscopic analysis of 

urban roads. Recently, pNEUMA dataset is the first of its kind that offers the large-scale 

urban traffic data collected from multiple UAVs in the form of vehicle's trajectories. In this 

paper, we present extended version of the pNEUMA dataset called "pNEUMA Vision" which 

incorporates imagery data and additional vehicle's annotations. We describe the processing 

procedure of the raw data, available information and annotations of pNEUMA Vision, and the 

identified noises in this new dataset. We also propose a method of estimating the number of 

vehicles on the road through image segmentation approach by estimating the density maps of 

input images. We analyze the result to show our approach can be useful for identifying the 

traffic queues in the network.   
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1 Introduction

Since the expansion of road infrastructure is limited and expensive, the continuous
increase in the number of vehicles results in high traffic volumes and congestion levels.
Consequently, innovative and effective measures have to be taken to tackle the challenges of
ensuring efficient and optimal use of the existing network. For this purpose, the intelligent
transportation systems (ITS) are employed to monitor, analyze, and control the traffic.

The development and the improvement of both the microscopic and the macroscopic
traffic models are critical for managing the networks using ITS. The task of collecting
traffic data and its analysis is a vital element for developing the traffic simulation models.
While the literature in microscopic models, such as car-following or lane-changing is vast,
most of the existing models have been calibrated with freeway data, as there are not
many complete and accurate trajectory datasets for congested urban networks. The most
commonly used devices for collecting traffic conditions are induction loops, overhead radar
sensors, and fixed video camera systems. Although such traditional devices have provided
accurate and useful data, they could only measure the limited area of the traffic networks.
This results in several missing points within the networks as the detectors could not
cover the whole networkCoifman et al. (2006)Barmpounakis et al. (2016a). Some other
methods use advanced techniques resulting in the big dataset, such as probe vehicles with
GPS, vehicle-to-infrastructure (V2I), and smartphone sensor information. These methods
usually require manual detection by individuals, and it is not always easy to convert
such data to meaningful traffic dataVlahogianni (2015). The use of GPS technology may
not be accurate enough for vehicles locations, especially in the metropolitan areas. It is
also harder to study the drivers’ behavior if the drivers are aware that they are being
monitoredSalvo et al. (2014b)Barmpounakis et al. (2016a).

The recent advancement of the unmanned aerial systems (UAS), the so-called drones, is
considered an emerging technology that could benefit transportation domains based on
collecting traffic data through cameras mounted on drones. Thanks to their flexibility in
their navigation and lower deployment cost compared to the traditional traffic monitoring
devices, we could monitor more expansive areas from the top-down view. They can also
travel at higher speeds than vehicles on the roads and are not restricted to traveling
on the road networkCoifman et al. (2006). The influence of local disturbances at the
urban scale, such as when vehicles change lanes to turn or overpass a taxi or bus that
stopped to serve passengers is still not well understood. To further advance this direction
of research a complete monitoring of the surrounding environment both over time and
space is necessary, which is impossible with sparse loop detectors or low penetration GPS
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sensors.

The videos captured from the drone camera can be processed, and the extracted traffic
data can be then used for various purposes such as monitoring and surveillance of the
traffic streams, recognizing abnormal situations, aid in managing traffic congestion, driving
behavior analysisBarmpounakis et al. (2016b). Among many UAS-based traffic datasets,
pNEUMA is the most extensive urban traffic data presented by Barmpounakis and
Geroliminis (2020). It is collected from a field experiment that utilized a swarm of 10
drones. This work was the first of its kind that provides details of congestion propagation
in the urban networks covering more than 100km lanes of the roads, including around 100
intersections and almost half a million trajectories in Athenes’ central business district.

While there is a lack of large-scale urban network data collected from drones, pNEUMA
provides only the trajectory information of the vehicles seen in the collected videos. The
imagery traffic data has not yet been used for research using computer vision. However,
seeing drones as a future technology that can improve traffic monitoring and control, it
is intriguing to model an architecture that outputs useful traffic information from the
input videos directly, without extracting the trajectory of individual vehicles. From this
point of view, we have been inspired to develop models that can estimate important traffic
parameters such as the density of the congested network directly from the videos captured
from drones in an urban environment.

This paper is structured as follows: Section 2 reviews how UAS technology has been
employed in state-of-the-art transportation research. Section 3 is dedicated to pNEUMA
Vision, the new dataset. Section 4 provides experiment details of our proposed density
map based vehicle counting method. The experiment result and discussions for identifying
the traffic queues in the network are presented in Section 5. Finally, we conclude this
paper in Section 6 with future research opportunities with pNEUMA Vision.

2 Background

UAS are considered an emerging technology that can overcome traditional traffic sensors
such as induction loops, overhead radar sensors, and fixed video camera systems. These
kinds of sensors could only acquire information within the limited area and thus missing
a lot of useful information. Compared to traditional traffic sensors, UAS have advantages
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in terms of operating cost, flexibility of data acquisition. Drones provide high-resolution
images with plentiful contextual information by encompassing broad traffic areas and thus
providing a larger overview of areas of interests.

The early transportation research using drones was focusing on the methodology on
how to extract traffic parameters such as flow and density of the roads Salvo et al.
(2014b)Apeltauer et al. (2015)Khan et al. (2017). They stabilized and geo-registered the
UAS videos to detect and track the moving vehicles by background subtraction methods
and optical flow algorithms. The extracted parameters were then analysed by comparing
to simulation data or to data acquired by probe vehiclesSalvo et al. (2014a). Since deep
neural networks became popular for object detection and recognition, there has been a lot
of research starting to train the convolutional neural networks with their drone video data
to detect and track vehicles for the various traffic applications. Zhu et al. (2018) estimated
the density of the area by counting the vehicles through vehicle detection. Zhang et al.
(2019) focused on tracking and measuring the speed of the vehicles to decide the congestion
level of the roads. Ahmed et al. (2020) studied the effect of queue-jumping phenomenon
of the motorcycle on traffic flow within the green time. Khan et al. (2018) identified the
flow state and the shockwaves at the signalized intersection through extracting vehicle
trajectories from the videos they have collected.

The data collected from drones play a crucial role in the development of deep learning
based vehicle detection algorithm for many traffic application research as mentioned
before. Many of the research presents their own dataset collected with the purpose
for their application. Usually, these datasets are limited in the scene variance and in
scale so that this makes it difficult to adopt this dataset for different kind of traffic
application algorithm. There also exists a large-scale UAS-based dataset commonly used
as a benchmark for deep-learning based vehicle detection algorithm. The SDDRobicquet
et al. (2016) consists of videos of eight unique scenes over the Stanford University Campus
with a resolution of 1400 x 1904 pixels. The dataset comprises various annotations,
including 11.2K pedestrians, 6.4K bicyclists, 1.3K cars, 0.3K skateboarders, 0.2K golf
carts, and 0.1K buses. The CARPKHsieh et al. (2017) is a UAS-based car parking dataset
captured from different parking lots which consists of around 90K cars annotated. This
dataset is widely used for vehicle detection in the parking areas. The VisDrone 2020Zhu
et al. (2020) is a UAS-based dataset consists of 400 videos around 265K frames with a
resolution of 3840 x 2160 and 10.2K static images with a resolution of 2000 x 1500. The
videos are captured both urban and country scenarios from 14 cities in China with different
drone platforms under various weather and lighting conditions. This dataset aims to tackle
the tasks such as object detection and single and multiple object tracking. The UAVDT
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datasetDu et al. (2018) consists of 80K frames from 10 hours of raw videos captured
by drones in various complex scenarios including squares, arterial streets, toll stations,
highways, crossing and T-junctions. The frames are annotated manually along with some
attributes such as flying altitude, occlusion, vehicle category, weather condition, and
camera view. Similar to VisDrone 2020 dataset, UAVDT dataset also target for the object
detection, and single and multiple objects tracking tasks. The highD datasetKrajewski
et al. (2018) is collected from 6 different locations in German highways using drones. It
includes more than 110K vehicle annotations and its trajectory including vehicle type,
size and manoeuvres. This dataset is created for the safety validation of highly automated
vehicles and other tasks such as the analysis of traffic patterns or the parameterization of
driver models.

While these datasets are providing abundant data and annotations captured from drones,
SSD and CARPK datasets are limited to campus and parking lot scenes so that they
are not totally fit for urban traffic network research. Similarly, although VisDrone 2020,
UAVDT, and highD dataset captured the actual traffic stream, their scenes are limited to
one intersection in urban roads or a specific highway segment. Since one of the important
problems in urban transportation research using UAS is to inspect the relationship between
multiple sections of the network, it is required to have a dataset which covers the large
areas of the traffic networks in the same period. The newly introduced pNUEMA Vision
dataset can play the role to tackle this research question and not limited to it as it provides
real traffic dataset recorded from 10 drones covering more than hundreds of intersection
of congested urban network which is its critical advantage that this dataset has over the
other existing drone datasets.

3 pNEUMA Vision

With the emergence of machine learning, data becomes even more important for building
transportation models, especially for the traffic research using drones. A significant
amount of aerial video footage was collected and analysed in order to create the pNEUMA
datasetBarmpounakis and Geroliminis (2020). While pNEUMA includes trajectory data
from almost every vehicle (cars, buses, motorcycles, taxis etc.) in a complex urban
environment, in order to maximize its applicability to researchers from different disciplines,
it is necessary to extract, organise, store and arrange the data into the proper formats.
Several steps have been done for data processing as shown in Figure 1; video stabilization,
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frame extraction, coordinate transformation and adjustment from WGS-84 to image
coordinates, and vehicle annotations as bounding boxes. This section will describe more
details about dataset processing steps, nature of the new dataset, and possible research
direction.

3.1 Data Pre-processing Steps

Figure 1: The pipeline for pre-processing pNEUMA for pNEUMA Vision.

3.1.1 Video pre-processing

A certain amount of turbulence occurs when drones are flying, and as a consequence,
the videos taken during the flight are unstable. In order to fix this problem, the video
stabilization method has been adopted as a pre-processing step. We used the stabilized
videos from existing software DataFromSky (2016). The stabilization process matches
the central part of the frames throughout the times so that the parts that could not be
matched with other frames, mainly border parts of the video, are set to black as shown
in Figure 2. Once the videos are stabilized, frames are extracted and saved in a JPEG
format.
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Figure 2: Comparison between video frames before and after stabilization

(a) Before stabilization (b) After stabilization

3.1.2 Coordinate transformation

The new dataset, pNEUMA Vision, is basically an imagery dataset so that its annotations
have to be in a format in pixels. However, the original pNEUMA dataset only has the
annotations in WGS-84 coordinates. Therefore, it is required to conduct a coordinate
transformation between real-world coordinate and image coordinate. Assuming that
the video is stabilized with high accuracy, we finds the mapping matrix H which maps
real-world coordinates (Xgps, Ygps) to image coordinates (Ximg, Yimg) using equation 1.
Since there were more than hundreds of vehicle per each frames so that it is impossible
to find the image coordinates of each vehicles in a video manually. With an assumption
that there is a linear transformation between real-world coordinate and image coordinate,
knowing exact position in both coordinates of some portion of vehicles in the video will
make it possible to derive mapping matrix. We choose more than one-third of vehicles, not
limited to a certain area, on a single frame for the better approximation of the mapping
matrix. After manually checking their pixel position, the mapping matrix is calculated
using least median square method.

Ximg

Yimg

1

 = H

Xgps

Ygps

1

 =

h00 h01 h02

h10 h11 h12

h20 h21 h22


Xgps

Ygps

1

 (1)
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3.1.3 Coordinate angle adjustment

When collecting the dataset, each of the drones was positioned in diverse directions as
shown in Figure 3 so that the direction of the vertical axis of each video is not consistent in
a real-world coordinate. Since the azimuth of the vehicle is one of the important parameters
for the better vehicle annotations, angle adjustment between real-world coordinates and
image coordinates for each drone videos is considered.

Figure 3: Diverse direction of each video in pNEUMA in real-world coordinate. (Left)
A map of all videos taken. (Right-up) A frame from drone 3 and its direction in real-
world coordinate. (Right-bottom) A frame from drone 6 and its direction in real-world
coordinate.

In real-world coordinates, the direction is set in counter clockwise with 0° being the
direction to the north in the map whereas in image coordinate, the direction is set
clockwise with 0° being the direction of the Y-axis of the image. The equation 2 shows
the relationship between azimuth of vehicles in real-world coordinate, θgps, and the image
coordinate, θimg. The αi is an angle offset for the i-th video and depends on the drone
position during data collection this value is different. This angle offset is determined
through the comparison between θgps and θimg derived from a combination of two vehicles
in the same frame, considering all the pairs of vehicles within one frame. Once the angle
offset is found, we can then calculate the θimg from the real-world azimuth from the
pNEUMA dataset.

θimg = f(θgps, αi) = mod2π(−θgps + αi) (2)
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3.1.4 Annotation of vehicles

The final step of the data pre-processing is producing vehicle annotations as of bounding
box. The vehicle locations are given as WGS-84 coordinates in the pNEUMA dataset so
that putting the tight bounding box around each vehicle requires manual annotation by
a human. Even though it is well known that having the data annotation as precise as
possible helps in training the deep neural network, we have decided to have less precise
bounding-box annotation, yet highly precised as point annotations, on a large scale.
Therefore, instead of manually annotating bounding boxes for every vehicle in the videos,
the fixed size of bounding boxes is set for each vehicle type. We produced two types of
bounding box of the vehicles, one with rotated position and the other with axis-aligned
position as shown in Figure 4. To create the rotated bounding boxes, the fixed sized
bounding boxes are placed over the vehicles according to the vehicles’ positions and they
are rotated according to the vehicles’ azimuths, which are calculated in the previous step.
For bounding boxes of axis-aligned position, we calculated rectangles which encompass
the rotated bounding boxes tightly and its width and height are parallel to XY-axis of
the frames.

Figure 4: Example of two types of vehicle annotations.

(a) Rotated bounding boxes (b) Axis-aligned bounding boxes.

3.2 Properties of pNEUMA Vision

3.2.1 Available information and annotations

The new dataset pNUEMA Vision can be seen as the expanded version of its predecessor
pNEUMA and therefore it inherits much information available in pNEUMA, including
vehicle locations, vehicle azimuths, vehicle speeds, vehicle types, and vehicle IDs. Note
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that vehicle locations, azimuths, and speeds are in a format of pixels in image coordinate.
Moreover, pNUEMA Vision contains of 18 sets of 13min length videos with 25 frames
per second, and in total 351K frames of size 3840x2100 are available. This dataset is
composed of 10 videos from different location above congest urban district of Athens in
the morning from 9:00 to 9:30. Also it includes the videos of two regions, taken from
drone 2 and drone 3 at 5 different periods in the morning on the same dayBarmpounakis
and Geroliminis (2020).

3.2.2 Noises in the bounding box annotations

When producing the bounding box for vehicles, as explained in Section 3.1.4, it was not
possible to manually draw bounding boxes for every vehicle. Instead, we rely on the
original dataset pNEUMA for their creation, and leaving some noises in the bounding box
annotations as a result as shown in Figure 5.

• Rough size of the vehicles’ bounding boxes
As we used fixed sized bounding box for each vehicle type, there are some vehicles
that does not fit perfectly because they are bigger or smaller than the bounding box.
For example, there exist some articulated buses on the road which are longer than
the bounding box for the bus type. On the other hand, some compact passenger
cars are shorter in length compared to other passenger cars so that their bounding
boxes are bigger than themselves. Similar effect happens to heavy and medium
trucks since those types of vehicles have different sizes.

• Incorrect vehicle orientation for temporarily parked vehicles
The azimuth of the vehicle is calculated when it starts to move in the video. Therefore,
for the vehicles which are temporarily parked on the side lane of the roads, the
azimuth has different direction in the video from the direction during the periods
it was parked. This happens usually for taxis and buses especially when they are
parked in the beginning of the video and start to move in between the recording
session. The bounding boxes for those vehicles are in the beginning in a wrong
orientation from its actual position. If vehicles are parked throughout the whole
recording session, they are not annotated; like in pNEUMA dataset in which they
are not tracked at all.

• Annotations of occluded vehicles
In the pNEUMA dataset some of the vehicles are tracked even though they are not
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Figure 5: Example of imperfect bounding boxes for both axis-aligned position and rotated
position.

(a) Rough bounding boxes

(b) Incorrect vehicle orientations
(c) Annotations of occluded vehicles

visible in the scenes. This may happen if a vehicle appears in the scene for a short
period, then gets hidden for various reasons (buildings, trees, etc.) However, it leads
to having bounding box annotations over the building at the position where the
vehicles are expected. While there are not many occluded spots in the videos, we
would like to point this noise for the potential future user of pNEUMA Vision.
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4 Experiment

4.1 Method: Density Estimation of the regions

With the advent of image processing techniques with deep learning, many high-performance
models have become available to detect or segment objects. Many studies on traffic
monitoring using UAS are detecting vehicles in the images first and then compute other
traffic information including number of vehicles, speed of the vehicles, etc. Zhu et al.
(2018) and Khan et al. (2018) use deep learning based object detection algorithm using
convolutional neural network to detect vehicles to count their number. Based on the
vehicle detection result, Zhu et al. (2018) computed the density and Khan et al. (2018)
tracked vehicles and identified the shock wave occurred at one of the lanes in the road.
Mou and Zhu (2018) used instance object segmentation methods to count the number
of vehicles in the large parking lot. One of the disadvantage of detecting or segmenting
the vehicles beforehand is that the noises in the detection or segmentation results such as
false positive detection can propagate into the next step of computing traffic parameters
such as density. Additionally an extra processing can be required to identify parts of
the same vehicle when they show up in the multiple input images. In our method, we
trained end-to-end deep neural networks to estimate the density in the region in order to
minimize the such error propagation between multiple computing steps.

4.1.1 Density map

The density map is often used in crowd counting problem where each position of a person
is indicated as a dot with value of 1. In this scenario the density map is generated by
applying 2D Gaussian kernel to the ground truth dot mapWan and Chan (2019). Since
vehicles are usually much larger in pixel numbers than a person in the crowd and sizes of
the vehicles are distinctive from the aerial view, the density map can be defined in another
way. We have defined the density map D where each pixel is the sum of proportion of the
vehicles sizes and thus sum of the density map is equal to the number of vehicles in the
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region.

Di,j =
∑
k

1

Sk
, i ∈ W,andj ∈ H and Nvehicle =

∑
i

∑
j

Di,j (3)

In the equation 3, Di,j is the (i,j) pixel value of the density map D of size W x H. Sk
refers to the size of the k-th vehicle whose bounding box is on the (i,j) of the image. The
size of the vehicle is set depends on its type. In other words, the larger vehicles such as
buses and trucks have smaller pixel values in the density map while smaller vehicles such
as cars or motorcycles have larger pixel values. Note that we used the rotated bounding
boxes as a reference to create the density map. When two bounding boxes overlap, we
sum up all the pixel values so that the number of vehicles in the region does not change.
As shown in Figure 6, pixels belongs to a bus have smaller values than that of passenger
cars so their pixels are marked as lighter color in the density map. The sum of the pixels
in Di,j gives the number of vehicles in the given image Nvehicle.

Figure 6: Example of density map where the color indicates the value of pixels and smaller
vehicles have higher values while larger vehicles have lower values.

4.1.2 Density map based vehicle counting using object segmentation network

In this paper, we propose a framework which predicts the number of vehicle as an output.
Zhang et al. (2017) modified fully convolutional network for semantic segmentationLong
et al. (2015) by combining extracted feature maps from shallow layers to improve the
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segmenting the multi-size vehicles captured from the web camera. Since this web camera
has been installed above the road and it creates one-point perspective, the size of the
vehicles vary depends on its location due to the point-of-view. For example, the cars that
are further away from the camera are under low resolution like ten pixels and suffer from
occlusion while the cars that are close to the camera are in high resolution and easy to
distinguish. Unlike this study, the vehicles observed by UAS from a top-bottom view like
pNEUMA Vision do not suffer from variance in resolution and their size does not depend
on their location. Still, however, the size of the vehicles is different depending on their
types so we have adopted atrous convolution for semantic image segmentationChen et al.
(2017) which has significant strengths in extracting features of objects in multiple sizes.

Our proposed network is structured as an encoder-decoder which infers the number of
vehicles through predicted density map. Since directly regressing the count of the vehicles
can lead to the large errors, we predicted the density map as an intermediary objective to
achieve better global optima and thus improving the robustness of the network.

In the encoder part, ResNet101He et al. (2015) is used to extract low-level feature maps
from the input images and applied atrous convolution for the deeper layers. In the decoder
part, multi layers of deconvolution has been used to make the feature maps to be the same
size as the ground truth density map. Finally, the decoder generate predicted density map.
We applied pixel-wise L2 loss on this predicted density map which is denoted as Ldm in
Equation 4. Also we also applied L2 loss on the predicted number of vehicles which is
denoted as Lvc in Equation 4. Then the total loss used to train the network, L, is the
weighted sum of Ldm and Lvc.

L = λdmLdm+λvcLvcwhereLdm =
∑

(Dgt−Dpred)2andLvc =
∑

(N gt
vehicle−N

pred
vehicle)

2 (4)

4.2 Setup

We choose two main arterial roads in Athenes center called Panepistimiou street and
Alexandras avenue for our experiment. Those streets are captured from D2, D3 and D8.
We manually cropped the roads part in a size of 227x227 so that Panepistimiou street is
divided into 28 segments of a total length of 840m and Alexandras avenue is divided into
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11 segments of a total length of 330m. The part of the Alexandras avenue(D8) chosen
for the experiment and its cropped segments are shown in Figure 7. For training the
network we used the images of Panepistimiou street(D2 and D3) captured between 8
a.m. to 9:30 a.m. The images of Panepistimiou street(D2 and D3) captured between 9:30
a.m. and 10:00 a.m. are used as a validation set. We composed the two different testing
set one from Panepistimiou street(D2 and D3) captured between 10:00 a.m. to 10:30
a.m. and the other from Alexandras avenue captured between 9:30 a.m. and 10:00 a.m..
To summarize, 453k images, 151k images, and 302k images of size 227x227 are used for
training, validation, and testing respectively. The network has been trained using GPU
model RTX-2080Ti with Ubuntu 18.04 LTS.

Figure 7: The road image and its segments used for the experiment

(a) Alexandras avenue from D8

(b) Examples of the road segments of Alexandras avenue

5 Results and Discussion

5.1 Vehicle counting

The task of our method is counting the number of vehicles in the image and the performance
is measured using the mean absolute error(MAE) of the vehicle counting. We analysed the
result in two different ways; One is the segment of the road where each segment represents
the initial input image to the network of size 227x227 and the other is the integrated road
segments which represent the whole arterial roads. In order to compare our result with
the most prevalent approach of vehicle number counting which is object detection based
counting, we trained YOLOv4Bochkovskiy et al. (2020) network which is well known for
its object detection performance. We used same training, validation, and testing set for
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YOLOv4 as we did for our method. The Table 1 shows the comparison of these results.

Table 1: Result of mean absolute error of vehicle counting of each method

Methods
Test set Unit DMM VDM

Panepistimiou street (D2, D3)
Road segment 1.041 1.3033

Integrated road segment 10.203 17.778

Alexandras avenue (D8)
Road segment 1.533 1.349

Integrated road segment 5.450 6.653

From the result of a single road segment, we could observe that our proposed method,
density map based method (DMM), could count the number of vehicle slightly better than
the vehicle detection based method (VDM) does. Note that in the ground truth, each
road segment contained six vehicles on average for Panepistimiou street and nine vehicles
on average for Alexandras avenue. Since the training set is composed with roads from
D2 and D3, the performance is slightly better when the testing set is also from the same
scene(D2 and D3 - Panepistimiou street) for both methods. The false positive detections
as shown in Figure 8 were the main reason for having errors in counting vehicles.

Figure 8: Example of false positive case.

(a) Ground truth (b) Predicted density map (c) Vehicle detection result

In the investigation of the MAE for each segment from the Alexandras avenue(D8), we
could observe that in certain segments are suffering from high error in vehicle counting,
especially for the density map based approach. As shown in Figure 9, the some road
segments which have MAE higher than two, include obstacles in the middle of roads such
as trees occluding some part of road. Especially when the vehicles are occluded under
the trees, it is difficult to identify them with the specific trained network, whereas the
vehicles still exist in the ground-truth annotations.

From the result of an integrated road segment, we could observe that our proposed method
could count the number of vehicle better than the VDM does for both streets. Note that
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Figure 9: The road segments of D8 that suffer from high errors(higher than 2) with DMM.

(a) MAE of vehicles counting for each segment of D8

(b) Segment 3

(c) Segment 6

(d) Segment 7

in the ground truth, there were 174 vehicles on average on Panepistimiou street and 99
vehicles on average for Alexandras avenue. When a vehicle is located in two segments, as
shown in Figure 10, the VDM detects and counts both part of the vehicles as one and
thus double counting for a single vehicle. On the other hand, our proposed method gives
proportional value of the car so that it suffers less from double counting when aggregated
all the segments of the road. This feature is useful when we have limitation for the input
image size for the network as there is no need for the post processing of the outcome.

Figure 10: Example of double counting of vehicles with vehicle detection method.
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5.2 Queue identification on the lane

One of the main advantages of the DMM over VDM is that it provides how much the road
is occupied by the vehicles. Unlike VDM which counts each detection of vehicle as one
vehicle, DMM is trained to learn how much portion of vehicle belongs to each pixels.

In this section, we have extended our results for analysing queues which is considered as
one of the important phenomena in urban traffic management. We can infer the status
of queues by the number of vehicles in the portion of a lane in a certain period of time.
We can assume that the queue is building if there are more vehicles in the region for
some period of time. When the number of vehicles are decreasing, we can assume that
the queue is dissolving. In this sense, we have applied moving average onto the results
to analyze the change in the amount of vehicles on the road throughout the time. The
window size for moving average has been set as 100 pixels in road length and the step
size as 30 pixels. Considering that normal passenger vehicles and buses are approximately
40 and 110 pixels in length respectively, the expected number of vehicles in this size of
window is normally between one to two depending on the size of vehicles.

The Figure 11 shows some lanes from Alexandras avenue(D8) which we used for our
analysis. We cropped the region of each lane from the ground truth, the predicted density
map, and the vehicle detection result from YOLOv4 and then calculated the average
number of vehicles within the pre-defined window for moving average along the whole
road. The results of applying moving average to identify the queues in the lane are shown
in Figure 12. Note that the travel direction is from 0 to 2500th pixel and the lane 1, 2,
and 3 are colored in blue, magenta, and yellow in the Figure 11 respectively.

Figure 11: Lanes in the Alexandras avenue(D8) which used to analyze the queue.
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Figure 12: Time-Space-Density diagram for lanes in D8 indicated in Figure 11. The color
indicates the number of vehicle in the spatial window.

(a) Lane 1 (Blue lane in Figure 11)

(b) Lane 2 (Magenta lane in Figure 11)

(c) Lane 3 (Yellow lane in Figure 11)
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The Time-Space-Density diagrams from Figure 12 clearly show how traffic evolves through-
out the time. Also our proposed method better indicates the region where the densities
are higher than the VDM. With VDM, it is difficult to know how much each detected
bounding box corresponds to how much portion of the vehicle. Especially when the size
of the vehicles varies and there is no prior knowledge of whether the detected vehicle is
only the part, it is hard to tell with how many number of vehicles are occupying the road.
On the other hand, with DMM, the predicted density map provides knowledge of in what
portion of the vehicles takes up each pixel. Therefore, we can directly derive the density
of the region without any further processing.

One of the interesting phenomena that we could observe in the result is a queue created
due to a bus decelerating and stopping to pick up passengers. As shown in Figure 13 (a),
the white bus in the first lane has decelerated to stop at the bus stop followed by two
taxis. Since there was another bus (the yellow bus in front of it) which was picking up the
passengers, the white one should stop for some seconds on the lane and thus create the
queues for the vehicles behind it. Even though this is a small example of the queue created
by the bus stopping, we could clearly spot out this event from the Time-Space-Density
diagram in Figure 13 (b) and (c). The zoomed-in view of the diagram clearly shows how
the DMM can illustrate the queue formation better than the VDM, as the actual vehicles’
dimensions and spacings are also identified with the DMM.
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Figure 13: Queue identified from the Time-Space-Density diagram due to the bus stopping.

(a) The queue created by the bus stopping

(b) Time-Space-Density diagram of the first lane in D3.

(c) Zoomed-in view of the selected in blue square area.
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6 Conclusion

In this paper, we introduce an extensive UAS urban traffic imagery dataset named
pNEUMA Vision which includes bounding box annotations of multiple types of vehicles.
The opportunities that arise from the pNEUMA Vision dataset are huge as it is one of
the largest datasets that can be found in an urban setting. We believe that different
applications can arise to enhance our understanding of traffic congestion mechanisms but
also to contribute to different topics of sustainable mobility management. Similarly, the
computer vision community can have access to a very large amount of labelled data and
high-resolution images and increase the accessibility of available datasets in this domain
of research.

Specifically, the different types of vehicles that were monitored during the pNEUMA
experiment, can turn pNEUMA Vision into a benchmark dataset for vehicle detection,
especially from a vertical point-of-view which is not usual in the existing datasets that
are used for the same purposes. Cars, taxis, buses, powered-two wheelers (PTWs), bikes,
medium and heavy vehicles are all present in the city centre of Athens. Apart from
the variety of vehicles, more challenging problems can be tackled, for example different
lighting conditions or when the same type of vehicle can appear in different sizes. A
characteristic example are buses, because, as discussed before, articulated/mini buses
have a bigger/smaller length than normal sized ones, or PTWs with scooters being smaller
than big capacity motorcycles.

Another opportunity in vehicle detection arises from the different extracted features of the
detected object. In many cities worldwide, taxis except for different driving behaviour in
the traffic flow, they also have a characteristic colour compared to the rest of the vehicles.
In pNEUMA Vision, all cars with the characteristic yellow colour are classified as taxis and
thus similar algorithms can be tested towards this direction. The detailed trajectory data
of taxis combined with pNEUMA Vision and spatial data has the potential to disclose
important results in terms of their operation, by identifying taxi hot spots in both time
and space.

While the above applications are focused on computer vision and do not require any
significant background in traffic flow theory or transportation engineering in general,
the size of the pNEUMA experiment allows the usability of pNEUMA Vision to be
enhanced for traffic related purposes. Firstly, a combination of pNEUMA and pNEUMA
Vision can also be used for trajectory data generation. Synthetic vehicle trajectories
can be produced similar to the real vehicle trajectoriesChoi et al. (2021) or for parts
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of the network where occlusion does not allow the monitoring of the whole network.
Additionally, the identification of queues, bottlenecks and spillbacks can be an extremely
useful topic for real-time implementation in traffic management schemes. It should be
noted that while one can use the pNEUMA dataset to identify the same phenomena using
vehicles’ trajectories and the fundamentals of traffic theory, pNEUMA Vision can allow
the detection of problems using a theory agnostic approach which can still be extremely
useful for managing traffic operationsVlahogianni et al. (2021).

By combining the two datasets, significant research opportunities in different aspects
of traffic operations can also emerge. One of the main advantages of a multi modal
environment is the interactions between buses and the rest of the vehicles. By fusing
spatial data from external sources for the identification of bus stops, their duration, and
the interactions with the rest of the vehicles can now be studied in detail. For the parts of
the network that bus lanes are available, one can quantify the effect of violating vehicles
in traffic or the effect of the bus lane in the capacity and thus flow of the arterial during
different traffic conditions. In parallel, the identification of illegally parked vehicles could
provide results in similar directions. Significant findings can also be revealed regarding
car following models, not only for operation purposes but for traffic safety and automated
vehicles too.

Additionally, although the signal timing in intersections can already be accurately estimated
using solely the pNEUMA dataset, an additional possibility can be detected for traffic
safety as one could also easily identify the red-light violations and associate driving risk
with traffic conditions or individual driving behaviour.

Finally, another potential opportunity can arise for transportation infrastructure monitor-
ing, for example by associating the horizontal road conditions or road markings with traffic
safety indicators. Although remote sensing has been quite popular pavement monitoring
and loophole detectionSchnebele et al. (2015), similar ideas have been proposed with the
utilization of dronesSilva et al. (2020). This dataset, except for the identification of such
cases for a broad urban road network, it allows their association with multi-modal traffic
volumes.

As one of the examples for using pNEUMA Vision, we propose a density map based vehicle
counting in the arterial roads. One of the advantages of density map based vehicle number
estimation is that it can be directly utilized with traffic engineering tools to estimate
important congestion phenomena, identification of the queue on the urban arterial roads.
The comparison between density map based method to vehicle detection based method
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which is the most dominant method for vehicle counting, via Time-Space-Density diagram
shows that our method gives better performance in terms of identifying queues.

The future work should be made towards developing a method to automatically identify
more traffic related phenomena using the density map based method, for example shock-
waves, spillbacks, etc.. As shockwave identification is based on sharp changes in density,
false positive or false negative from object detection can influence the accuracy. Hence, it
is more desirable to do density estimation directly than do individual vehicle detection to
identify the shockwaves.
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