EHzürich

A Review of Real-time Railway and Metro Rescheduling Models using Learning Algorithms

Matej Jusup Alessio Trivella Francesco Corman

A Review of Real-time Railway and Metro Rescheduling Models using Learning Algorithms

- DADA project team
- □ Problem description
- Relevance
- RL components in rescheduling
- □ RL vs traditional rescheduling models
- □ Literature overview along the years
- Learning algorithms used for train rescheduling
- □ Flatland challenge
- Conclusions and future research

DADA project team

Prof. Francesco Corman¹

Personal background

- BSc in Mathematics
- MSc in Mathematical Statistics
 - Master thesis: "Network Optimization in Railway Transport Planning"
- Various roles in an investment bank
 - 1 year in a technology team
 - > 1.5 years in a quantitative research team
- Data scientist in a start-up
 - > 1.5 years as a team leader
- Currently a PhD student in Transport Systems group
 - Supervisor: Prof. Dr. Francesco Corman

Morgan Stanley

Problem description

- Railway and metro networks operate according to predefined schedules
- Real-life operations are subject to uncertainty in e.g. train running time and dwelling time and/or passenger demand causing conflicts in the schedule
- Goal of rescheduling is to compute an updated conflict-free schedule while minimizing deviations from the original schedule

Relevance of the problem

Delays

- Disturbances often occur during real-life operations
- Primary delays cannot be reduced
- Secondary delays result from delay propagation
 - We can reduce or prevent them by rescheduling actions

Good rescheduling actions can:

- Minimize secondary delays
- Improve user experience
- Increase infrastructure utilization
- Reduce energy consumption

Reinforcement learning components in rescheduling

- 1. Agent dispatcher observes the environment and executes actions
- 2. Environment infrastructure and uncertainty
- 3. State space environment's representation available to the agent, e.g. train location and speed, number of invehicle passengers, passenger demand, section availability
- 4. Action space includes e.g. adjusting train departure, running and/or dwelling time, modifying signal shown, changing train speed, rerouting trains
- 5. Reward/cost function commonly a function of train delay, train running time, passenger delay, and/or energy utilization

State space, actions and reward function modelling options

State space might include:

- Train location
- Number of in-vehicle passengers
- Block section availability
- Disturbance time
- Disturbance duration
- Arrival time
- Dwelling time
- Train speed
- Train direction

Actions might be:

- Station-level
 - Varying dwelling time
 - Varying departure time
 - Adjusting running time
- Block-section-level
 - Modifying signalling
- Train-level
 - Adjusting speed

Reward/cost could be a function of:

- Train/passenger delay
- > Train running time
- Passenger travelling time
- Energy utilization

Reinforcement learning vs traditional rescheduling models

Traditionally, rescheduling has been tackled using rolling horizon techniques, stochastic optimization or MILP-based models

Advantages of using learning models

Advantages	Limitations
Learning decision policy offline	No guarantee of optimality bounds
Adaptiveness/online learning	Not easy to impose constraints
Instantaneous high-quality decisions	High computational resources for training
Potential of implementing transfer learning	

EHzürich

Literature overview along the years

Learning algorithms used for train rescheduling

SARSA	Q-learning	Deep deterministic policy gradient
Beneficial when we care about the agent's performance during the training process—e.g. we don't want to cause train accidents or deadlocks	 Preferable in situations where good training time performance is not necessary—e.g. we have weeks to train a model in the simulated environment Better option for railway rescheduling 	 Works with continuous actions—e.g. we might control the speed very precisely Hard to imagine real-life use-cases where we need such a precision

Flatland challenge

- Solving train rescheduling problem
 - One of NeurIPS 2020 challenges*
- Open-source Python package for easy environment construction**
 - Developed and maintained by SBB and Alcrowd
- Potential to become the community-wide benchmark
- > Traditional operations research methods dominated the leaderboard
 - Focusing on RL approaches might change that dynamic

Conclusions and future research

Conclusions	Future research
 Further improvements of the existing RL models are needed Hard to implement community-wide benchmark due problem's representation high dependance on the infrastructure type Scaling up models from lines/junctions to networks is still an open challenge 	 Expanding methodological scope by applying different classes of learning algorithms (e.g. deep Q-learning, graph neural networks) Exploiting larger computational power Work on a community-wide benchmark might be beneficial (e.g. Flatland) Transfer learning might have a potential to tackle some of the challenges

Thank you!

M. Jusup, A. Trivella, F. Corman | 13.09.2021 | Slide 14