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Abstract 

The surge of Mobility on Demand (MoD) is largely attributed to advancements in mobile 
internet and technology.  Ridesourcing platforms, among other solution services, offer 
convenience and flexibility when it comes to pick-up/drop-off time and location, all while 
keeping prices within affordable ranges. Similarly, ridesplitting renders itself as an extension 
to ridesourcing where platform users agree to share their rides in return for a reduced fare yet a 
longer travel time. Despite the numerous advantages that sharing introduced to the platform 
operator by reducing the fleet size necessary to serve demand levels, or to the environment by 
mitigating emissions, e-hailing is still overall negatively impacting traffic performance in urban 
spaces. This is partially due to current tendency of users to favor solo over shared rides. This 
paper aims to use aggregate traffic flow models to put forward a network space redistribution 
policy that has the potential to alleviate urban congestion by inducing modal shifts towards 
more efficient modes. Accordingly, we investigate the new network split that minimizes the 
total passenger hours traveled for all network commuters in the event where shared rides are 
allowed to use underutilized bus lanes. As a result, the choice to share is associated with an 
inevitable additional detour distance but with a lower-than-anticipated trip time compared to 
standard scenarios where the totality of the fleet utilizes the same network space. Results show 
that the impact of this strategy extends beyond the mere improvement of the total travel time of 
all network users to the reduction of the detour distance incurred by sharing as more users opt 
for ridesplitting. Moreover, this strategy decreases total network accumulation and incentivizes 
e-hailing platforms to lower their fleet size without much disturbing bus operations.   
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1. Introduction 

The rapid growth of ridesourcing systems evinces an increasing interest in personalized trips 
where users input their origins and destinations, and service providers assign them to convenient 
rides. These services, also interchangeably called e-hailing, are characterized by a single 
platform connecting both riders and drivers. It collects the totality of requested trip details to 
which it provides a feasible driver match from the operating fleet of available online vehicles. 
Another type of service fundamentally similar to ridesourcing is referred to as ridesplitting. In 
the latter, passengers grant their approval a priori to share their rides with other users of the 
system in return for an upfront decrease in fares to compensate for any inconvenience that 
sharing incurs. Ridesplitting has a myriad of advantages since it allows the same fleet of 
vehicles to accommodate a larger number of arriving requests while reducing the total travel 
distance [1].  

Despite their success, the ubiquitous character of these platforms (Uber, Lyft, DiDi Chuxing, 
etc) raises particular concerns because they provide the same service structure in heteroge- 
neous urban areas with diverse spatial configurations, various mode availabilities, mismatched 
public transport service levels, and different traffic intensities. Uber alone is available in more 
than 900 cities worldwide, with a total average trip count of around 18.7 million per day in 
2020. Its revenue for this same year from the mobility segment alone summed up to $7.9 billion 
[2]. Other statistics from the United States showed that Transport Network Companies (TNCs) 
drastically amplified vehicle miles in 9 of the largest metropolitan areas in the country [3]. The 
scale of these numbers justifies the continuous effort to (i) set forth a framework that models 
the operation of ridesourcing services and (ii) unravel their influences on traffic externalities, 
Vehicle Kilometers Traveled (VKT), modal substitution and complimentary, long-term car 
ownership, and social welfare of drivers and riders [4, 5, 6]. Accordingly, a comprehensive 
understanding of the interactions between the previous factors helps decision-makers to adopt 
informed policies and actions to regulate the service of e-hailing platforms.  

The type and extent of regulations are largely dependent on the expected outcomes that 
government aims to achieve. The multi-purpose intervention usually targets the fleet of vehicles 
by capping the number of registered drivers [7], or the cumulative time of driving empty [3]. 
Moreover, prompting TNCs to enact parking management strategies is efficient in reducing 
empty VKTs and subsequently mitigating congestion as demonstrated by a simulation study 
from a Chinese megacity [8]. The same results are reproduced under a static market equilibrium 
model where off-street parking spaces are utilized by TNCs to prevent on-street cruising [9, 
10]. Another category of regulations involves policy-makers’ attempt to maximize the social 
welfare of multiple stakeholders in the system by imposing a minimum driver wage, a 
maximum passenger fare, or by limiting commission rate which is the fraction of the total fare 
that is pocketed by the platform. Some of these policies are however not sustainable. In fact, 
the fare and fleet size values under social optimum are associated with a negative platform 
revenue in static modeling framework [11, 12].  

To our knowledge, however, the assessment of incentive-based regulatory approaches rather 
than enforcement strategies is still deficient in the literature. Moreover, the majority of the 
previous models developed to study the efficiency of any regulation policy only account for 
stakeholders in direct affiliation with the platform without consideration of other transport 
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network users. A quick review of available work on pooling in the context of e-hailing and 
carsharing validates the potential of trip sharing in mitigating congestion and reducing VKTs 
[4, 13]. We exploit these observations to put forward a regulation strategy that reconsiders space 
distribution in the network: by allowing shared TNCs to use dedicated bus lanes, we expect to 
achieve a new optimum that simultaneously reduces overall network delays and motivates e-
hailing platforms to reduce their fleet size.  

The remainder of this work is organized as follows. The next section describes the supply and 
demand sides of ridesplitting along with other major elements used in our model. The main 
findings and the sensitivity of our results to different demand levels and pricing schemes is 
displayed in the fourth section. The last part concludes on the optimal policy and advances 
future research considerations.  

2. Model Formulation 

The following section elaborates on the model that enables us to examine the redistribution of 
urban road space between different available transport modes. Given that ridesplitting services 
are central in our analysis, we start first by characterizing their foremost market properties. For 
simplicity, we assume a spatially homogeneous distribution of TNCs and passengers across the 
network. A single platform receives all requests, and its functionality is to arrange a proper 
vehicle-request match and dispatch but also to seize appropriate pooling opportunities when 
possible.  

2.1 Supply  

2.1.1 Supply in ridesourcing markets 

Any online operating vehicle belonging to the ridesourcing fleet is in one of the following 
states: (i) idling and waiting to be assigned, (ii) dispatching and on its way to pick up a request, 
(iii) in-service and dropping off a passenger. Under steady-state conditions, the influence of 
fleet size on network speed is usually disregarded assuming that its effect is negligible. 
Nevertheless, empirical evidence and simulation studies proved otherwise. The absence of any 
driver entry restrictions implies no limitations on fleet size particularly in scenarios where no 
regulations are involved. Consequently, the effect of a marginal increase in feet size extends 
beyond a decrease in speed to impact the service level of ridesourcing platforms.  

Let d be the dispatched distance from a request origin to the nearest idle vehicle. We know that 
d = d(I) is a decreasing function of the number of idle vehicles I such that d′ = ∂d/∂I < 0. We 
denote by v the speed of the network where a monopoly platform provides its service. v = v(n) 
is a decreasing function of the total network accumulation n = npv + N such that v′ = ∂v/∂n < 0, 
npv and N being the accumulation of private vehicles and fleet size respectively. Considering a 
short-term framework where no modal shift is involved and without loss of generality, we 
assume that the number of private vehicles remains constant in the network and hence ∂v/∂n = 
∂v/∂N. The total number of operating vehicles N is hence given by: 
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Where each term represents the three different states introduced in the previous paragraph. Q 
is the trip supply per unit time and 𝑙 ̅is the average trip length. d/v is the waiting time w of a 
request before being picked up by a vehicle. Assuming that the supply level remains constant, 
the partial derivative of w with respect to N is the following:  

 𝜕𝑤
𝜕𝑁 = −

𝑑𝑣!

𝑣" +
𝑑!+𝑣!𝑄+𝑙 ̅ + 𝑑- + 𝑣"-

𝑣"(𝑄𝑑! + 𝑣)  (2) 

The change in waiting time with respect to the fleet size is non-monotonous. Assuming that 
vehicles enter the road and become directly available for service, Figure 1(a) displays the 
variation of waiting time as function of fleet size for the same trip supply level. As fleet size 
increases, more vehicles become available for pick-up and hence the waiting time of requests 
decreases progressively. However, a very high number of TNCs not only reduces network speed 
but also interferes with the platform own level of service. The assumption that the accumulation 
of private vehicles remains constant lessens this interference as we expect the waiting time to 
deteriorate further if we account for the effect of fleet size on the accumulation of private 
vehicles.  

Moreover, limitless provision of vehicles in the network does not infinitely increase supply 
levels. In fact, the number of trips carried out by ridesourcing platforms displays an envelope 
(Figure 1(b)). This is because when we consider the influence of fleet size on speed, the partial 
derivative of Q with respect to fleet size is given by:  

 𝜕𝑄
𝜕𝑁 =

𝑣 + 𝑣!(𝑁 − 𝐼)
𝑙 ̅ + 𝑑

    (3) 

Eq.3 proves that when v > v (N − I), system supply increases with fleet size. Conversely, this 
behavior changes when v < v′(N − I). When v = v′(N − I), the number of serviceable trips reaches 
a maximum beyond which supplying more vehicles affects the platform’s own level of service. 
Again, the scenario presented here provides an upper bound on supply which will further 
decrease if the accumulation of other modes is accounted for. This interaction will be 
considered however in the remaining sections of this work.  

2.1.2 Supply in ridesplitting markets 

The formulation of supply in the existence of pooling must account for additional states [12]. 
Vehicles are either dispatched to perform a solo trip s or a pooled trip p. The main difference 
lies in the fact that half as many vehicles are required to perform a pooled trip. This is achieved 
however at the expense of an additional detour distance incurred as drivers are expected to 
change their routes for this purpose. If Qs and Qp are trip request rates for solo and pooled rides 
respectively, and ∆ld is the driver detour, then the number of TNCs under steady-state 
conditions is given by:  

 

 𝑁 = 𝐼 + 𝑄
𝑑
𝑣 + 𝑄

𝑙 ̅
𝑣 (1) 
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Figure 1: (a) Variation of waiting time with fleet size, (b) Variation of supply with fleet size 

  

 𝑁 = 𝐼 + 1𝑄# +
1
2𝑄

$4
𝑑
𝑣 + 𝑄

# 𝑙 ̅
𝑣 +

1
2𝑄

$ 5
𝑙 ̅ + ∆𝑙%
𝑣 7    (4) 

Compared to Eq.1, the four terms in Eq.4 represent vehicles that are: (i) idling, (ii) dispatching, 
(iii) occupied with one passenger, and (iv) occupied with at least one passenger. Clearly, 
ridesplitting market has the ability to serve more trips with the same fleet size compared to 
ridesourcing one. Nevertheless, the detour distance is a crucial factor in determining the 
potential and efficiency of pooling. A proper investigation of the different interactions between 
∆ld and trip service level is hence required. 

2.2 Demand in ridesplitting markets 

We start first by assuming that all commuters in the network perform their trips by one of the 
available modes: private vehicles pv, bus b, solo e-hailing rides s, and pooled e-hailing rides p 
such that M = { pv, b, s, p}. We restrict the mode choice however between solo and pooled 
rides as the purpose of this study is not to evaluate long-term interactions between available 
modes but to induce a short-term behavioral shift among e-hailing users that potentially benefits 
all network users.  

Let Fs and Fp be the average trip fare for solo and pooled rides, β1 and β2 the monetary value of 
time for the direct and detour trip portion respectively, ∆lp the average passenger detour 
distance. We denote by Cm the generalized cost of mode m, m ∈ Me = {s, p} and Me ⊂ M , the 
cost expression Cs and Cp are given by:  

 𝐶# = 𝐹# + 𝛽&
𝑙 ̅
𝑣    (5) 

 𝐶$ = 𝐹$ + 𝛽&
𝑙 ̅
𝑣 + 𝛽"

∆𝑙𝑝	
𝑣     (6) 

Using a binary logit model, we can estimate the fraction of passengers willing to share their 
rides f p as follows:  
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 𝑓$ =
exp(−𝜅𝐶$)

exp(−𝜅𝐶$) + exp(−𝜅𝐶#) 
   (7) 

Where κ is the scale parameter which is usually an exogenous constant inferred from the char- 
acteristics of the population under consideration. Notice that the waiting time is dropped from 
the equations of the generalized cost. Even if this average waiting time of pooled passengers is 
larger than that of solo riders, this difference is neglected for reasons that we expand on in the 
next section.  

2.3 Detour distance in ridesplitting platforms  

Before elaborating on the different factors influencing driver and passenger detour distances, 
we start by concisely delineating what both terms stand for. We call passenger detour the 
additional distance traveled by users due to the pick-up or the drop-off of another passenger. 
Similarly, we refer to driver detour the difference between the total pooled trip length and the 
average direct OD trip of the passengers involved in pooling. Generally, high detour distances 
impair pooling and prevent the operator from deriving benefits from such systems. The 
following section resorts to simulated data to analyze specific cases where pooling benefits are 
more tangible.  

Figure 2: Different pooled trip combinations 

 

For this purpose, we use the set of taxi trips generated from real data in the Chinese city of 
Shenzhen to simulate the set of pooling requests that arrives to the platform [8]. In the scenario 
where two requests are allowed to share their rides, enumeration of the possible trip 
combinations is straightforward. If x and y are the first and second passengers to be picked up 
with origin nodes Ox and Oy, and destination nodes Dx and Dy, and ly is the distance OyDy, 
then the resulting trip possibilities include but are not limited to T1 and T2 (Figure 2). The 
possibilities are in fact much larger in dynamic ridesplitting [14] but we limit our analysis to 
the static case. Given that the platform’s objective is to minimize the total distance traveled by 
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drivers performing a pooled trip and assuming that 𝑛$'# is the set of passengers willing to share 
their rides, we formulate the linear assignment problem as follows:  

 min
(
				GG𝑐)*

*)

𝑧)*   (8a) 

 
𝑠. 𝑡.					G(𝑧)+ + 𝑧+))

+

= 1																					∀𝑖 ∈ 𝑛$'# (8b) 

 													𝑧	 ∈ {0,			1} (8c) 

 
𝑊ℎ𝑒𝑟𝑒	c,- = X𝑚𝑖𝑛+𝑂)𝑂* + 𝑂*𝐷) + 𝐷)𝐷* , 𝑂)𝑂* + 𝑙* + 𝐷*𝐷)- 𝑖 ≠ 𝑗

∞ 𝑖 = 𝑗
 

   (9) 

Eq.8a summarizes the platform’s objective to minimize the total traveled distance of pooled 
trips. cij is the total distance traveled by drivers in case they picked up passenger i before j. It is 
chosen to be the minimum over the two possible trips T1 and T2 as shown by Eq.9. zij is a binary 
variable indicating whether passenger i is matched to passenger j and picked up before i. To 
make sure all requests in a pooling batch are assigned to another request, we set cij to infinity 
when i = j. Eq.8b ensures that every request is matched exactly once to another request in the 
pooling set and Eq.8c constrains z to be a binary variable. We note that we do not include any 
constraint with regard to the maximum allowable detour as our goal is to capture the demand 
intensity for which pooling becomes attractive. In other words, when the detour distance is 
extremely high, requests automatically opt for solo trips.  

Figure 3: (a) Driver detour ratio, (b) Passenger detour ratio  

 

Figure 3 shows the ratio of the average passenger and driver detour divided by the mean trip 
length as functions of the batch size of pooling passengers. The batch size |npas| is a proxy for 
pool demand intensity and time during which platform accumulates requests before running a 
pool matching algorithm. Evidently, as more and more passengers are willing to share their 
rides, the efficiency of pooled trips increases, namely because of savings in driver traveled 
distances and reduction in passenger detours. For very low batch size, pooling is unattractive 
as no distance savings are expected and an excessive passenger detour is unavoidable. The 
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empirical fitted curves that we derive from the previous results provide aggregate relationships 
between passenger detour, driver detour, and pooled demand intensity that are useful for the 
remaining of our work. In instances where the pooling demand is suppressed, a different fit is 
used to better predict the results when |npas| approaches zero. Overall, these relationships 
provide insight on how incentivizing trip sharing through optimal space allocation policies 
reciprocally induces higher pooled trips.  

2.4 Aggregate traffic flow for mutli-network approach 

In the model we presented, the space-mean speed is a crucial element to evaluate the average 
trip time for solo and pooled trips. To estimate its value, we resort to aggregate traffic flow 
models using a production function P where P(n) = vn. Defining a production MFD a priori for 
the total network makes it possible to compute speed if accumulation values are known.  

In order to incentivize passengers to share their rides, regulators might decide to allow pooled 
vehicles to use dedicated bus lanes where speed is expected to be higher than the remaining 
part of the network. We define 1 − α to initially be the fraction of the network exclusively 
dedicated to buses that we denote by network 2. When the proposed incentive is implemented, 
the space usage becomes as follows:  

• Network 1: Fraction of the total network space utilized by: (i) private vehicles, (ii) idle 
TNCs, (iii) dispatched TNCs, and (iv) solo rides.  

• Network 2: Space of the total network utilized by buses and pooled rides.  

For the purpose of this study, we use the 3D-MFD obtained by [15]. Figure 4(a) shows the 
production MFDs for a given network as well as that of the two resulting subnetworks when α 
= 0.8. Clearly, the shape of the two functions changes with α. Moreover, the production 
function for network 2 is reflective of scenarios with no buses. To compute vehicle speed in the 
existence of buses, an adjustment is introduced to take into account the fact that buses make 
frequent stops that possibly hinder vehicle movements [15, 16, 17]. Figure 4(b) shows these 
interactions using a 3D-vMFD where vehicle production decreases in the presence of buses.  

Figure 4: (a) Production MFD, (b) 3D-vMFD  
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2.5  Network model for ridesplitting markets 

If Qpv, Qb, and Qrs are the total demand for private vehicles, buses, and e-hailing rides 
respectively, we consider that demand is inelastic in the short-run. The available choice is hence 
whether e-hailing users opt for solo or pooled trips. The main factors dictating this choice are 
speeds in network 1 and 2. The accumulation in both networks is dependent on the fraction of 
pooling versus non pooling passengers as TNCs make different use of space depending on the 
type of trip they are assigned to. For a given α, the stationary state requires solving a system of 
non-linear equations defined by Eq.10. We refer to speed in network 1 and 2 by v1 = v1(n1,α) 
and v2 = v2(n2,nb,α) respectively, where n1, n2, and nb are the accumulation in network 1 and 2 
and the number of operating buses. Their values are dependent on the demand for solo and 
pooled rides which implicitly influences private vehicle accumulation. Concurrently, the choice 
of whether to pool or not is a direct outcome of the two network speeds but also of the detour 
distance. A high number of pooling trips entails a small passenger and driver detour, but a lower 
speed in network 2 which itself influences the choice for pooling.  

 𝑛& = 𝐼 + 1𝑄# +
1
2𝑄

$4
𝑑
𝑣&
+ 𝑄$.

𝑙
𝑣&
+ 𝑄# 5

𝑙
𝑣&
7 (20a) 

 
𝑛" =

1
2𝑄

$ 5
𝑙 + 𝛥𝑙%(𝑄$)

𝑣"
7 (30b) 

 𝐼  =  𝑑/&(𝜏 ⋅  𝑣& ) (10c) 

 
𝐶# = 𝐹# + 𝛽&

𝑙
𝑣&

 (10d) 

 
𝐶$ = 𝐹$ + 𝛽&

𝑙
𝑣"
+ 𝛽"

𝛥𝑙$(𝑄$)
𝑣"

 (10e) 

 
𝑄$ = 𝑄0#𝑓$ (10f) 

Eq.10a and 10b compute the vehicle accumulation in network 1 and 2 respectively. They take 
into account exclusive usage of space as defined by the suggested policy. The average trip 
length 𝑙 ̅for private vehicles and solo trips is presumably similar. Defining τ to be the target 
waiting time that e-hailing platform wants to sustain to guarantee a certain level of service, 
Eq.10c returns the number of idle vehicles required to maintain τ. The inclusion of idling and 
dispatched vehicles in our model is crucial given that their influence on network speed is 
sometimes detrimental. Eq.10d and 10e summarize the modifications introduced to the 
generalized cost functions such that users who opt for pooling travels for a distance 𝑙 ̅+ ∆lp with 
a speed v2 compared to solo users who travel for a distance 𝑙 ̅with a speed v1. Note that cases 
where 𝑙/̅v1 ≥ (𝑙 ̅+ ∆lp(Qp))/v2 are possible using the previous formulation. Consequently, the 
rationale behind having different βs in this case is to ensure that the sharing inconvenience is 
still accounted for in the model. Moreover, we do not include the waiting time in the generalized 
cost because on one hand, when the demand for pooling is high, origins of passengers are very 
close such that the additional waiting time incurred by the second passenger is minimal. On the 
other hand, when the pooling demand intensity is low, having a high detour ratio is sufficient 
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to reinforce solo ride as a more favorable option. Finally, Eq.10f gives the demand for solo and 
pooled rides based on a binary logit choice model.  

2.6 Optimal allocation policy 

In this part, we elaborate on the optimal space allocation ratio under the suggested policy. The 
objective is to determine the network fraction split that minimizes the total Passenger Hours 
Travelled (PHT) for all network users. Because possible delays for bus users are accounted for 
in the objective function, it is necessary to provide assumptions on the number and speed of 
buses nb and vb. Assuming that public transport operators aim to maintain an average occupancy 
�̅� at any point in time, then the number of operating buses is given by:  

 𝑛1 =
𝑄1𝑙1d
�̅�𝑣1eee

    (11) 

Where 𝑙𝑏d  is the average trip length of bus users usually greater than 𝑙 ̅and 𝑣𝑏eee is the average bus 
speed. The actual speed however is retrieved from the 3D-vMFD that we elaborated on in the 
previous section. It is equal to the speed of vehicles in network 2 but should be reduced to 
consider the additional dwell time of buses at different stops in the network. If the average 
spacing between successive bus stops is �̅� and td is the dwell time at stops, then the speed of bus 
is vb = γ(v2) such that γ is computed using the following equation:  

 γ(𝑣") =
1

1 + 𝑣"
𝑡%
𝑠

    (12) 

Because v2 is itself function of α, n2, and nb, this entails that the value of speed is dependent on 
these three variables such that vb = vb(n2,nb,α). Eq.13 below summarizes the objective of the 
regulator to minimize delays for all network users by modifying the space share α given to 
network 1.  

 𝑚𝑖𝑛
2
				𝑃𝐻𝑇(𝛼) = 𝑄$.

𝑙
𝑣&
+ 𝑄#

𝑙
𝑣&
+ 𝑄$ k

𝑙 + 𝛥𝑙$(𝑄$)
𝑣"

l + 𝑄1
𝑙1
𝑣1

    (13) 

Each term in Eq.13 computes the PHT for different modes by taking into account the 
appropriate speed, demand levels, and traveled distance as defined by Eq.10. This ensures that 
(i) demand split between solo and pooled rides is computed according to users’ choice, (ii) 
speed in every network is the result of the sharing fraction and of the fleet size, and (iii) the 
passenger detour time is decreasing with demand intensity but increasing with speed.  

The bus demand and subsequently the number of operating buses in the network is an 
exogenous variable. The speed of buses however is a direct outcome of the number of vehicles 
in network 2 and the value of α. Therefore, although Qb is inelastic, it influences the speed in 
network 2 which is a major element in determining the total PHT of bus users in the objective 
function.  
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To examine the usefulness of the proposed allocation policy, we define a benchmark scenario 
where dedicated lanes are exclusively used by buses and the remainder of the network is jointly 
utilized by private vehicles and TNCs. For this purpose, Eq.10 and 13 are modified where v2 is 
replaced by v1 and n2 is now embedded in n1. We note that solving Eq.10 for some values of α 
returns solutions in the hypercongested regime. We will however limit our analysis to solutions 
located in the uncongested regime. 

3. Results 

3.1 Performance of allocation strategy 

In this section, we resort to a numerical example to elucidate how the main variables of our 
model change under the proposed network allocation strategy where pool passengers are 
allowed to use dedicated bus lanes (dbl). We refer to this scenario as dbl + pool, and to 
benchmark one as dbl. Table 1 displays the values of parameters used to generate the results.  

With regard to the dispatched distance, we compute it based on closest vehicle assignment such 
that d(I) = 0.63m𝐴/𝐼 where A is the network area [18]. The production-MFD function follows 
a third degree polynomial where the critical accumulation of the whole network is 20690 veh, 
the jam accumulation is 58540 veh, and the free flow speed is equal to 40 km/hr. The passenger 
and driver detour ratios are computed according to the graph generated from empirical data in 
the previous section. In order to provide a map from Qp to |npas|, we define a batching time 
window wb which is the period during which platforms await pooling requests to accumulate 
before performing a pool matching round.  

Table 1: Default parameter values for numerical example 

Parameter  Value Unit 

Value of time for direct trips 𝛽! 30 $/hr 
Value of time for detour 𝛽" 40 $/hr 
Solo ride fare 𝐹#	 6 $ 
Pooling ride fare 𝐹$ 5.1 $ 
Average vehicle trip length 𝑙 ̅ 3.86 km 
Average bus trip length 𝑙%&  5.4 km 
Demand for private vehicles 𝑄$& 64000 pax/hr 
Demand for buses 𝑄% 20000 pax/hr 
Demand for e-hailing 𝑄'# 16000 pax/hr 
Average spacing between bus stops �̅� 0.6 km 
Dwell time 𝑡( 30 sec 
Average bus speed 𝑣%+++ 18 km/hr 
Batching time window 𝑤% 60 sec 
Binary logit scale parameter 𝜅 1 - 
Platform target waiting time 𝜏 2 min 
Network area 𝐴 107 km" 
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Figure 5: (a) Variation of PHT with 1 − α, (b) Variation of accumulation and fleet size with 
1 − α  

  

Figure 5 displays the PHT along with the fleet size and total network accumulation for the dbl 
+ pool and dbl scenario with the point that minimizes PHT occurring for α∗ equal to 0.829 and 
0.954 respectively. The values of PHT at these two points are approximately the same. Because 
the individual PHTs of bus and private vehicle users constitute a significant fraction of the total 
PHT, we particularly investigate their variations with α. In the two scenarios presented, the 
PHT of private vehicle users achieves its maximum for the lowest α over which the solution is 
defined. Contrarily, bus PHT is worst when the space attributed to network 2 is the lowest. The 
values of PHT in between the two extrema are additionally dictated by the interaction with 
TNCs. As α increases in the dbl + pool case, Qs increases as well up to a point where the 
influence of solo TNCs on v1 overrides the network capacity increase. For the dbl case, the 
decrease in fleet size and private vehicle accumulation is a dominant factor up until the dbl 
optimum. Beyond this point, the operation of buses is significantly impaired.  

However, discrepancies exist when we look at the accumulation and the fleet size at the two 
optimal points. In the dbl + pool case, given the attractiveness of pooling for low values of α, a 
significant portion of the fleet size is using network 2. Because pooled trips require less vehicles 
to serve them, the fleet size is lower in dbl + pool in spite of the fact that (i) more vehicles are 
needed to serve solo trips since the speed in network 1 is reduced for relatively small α, and (ii) 
a large value of Qp reduces detour distance but further disrupts flow in network 2. In the dbl 
case, Qp and Qs vary much less with α given that no privilege is involved. Pooling becomes 
more attractive of an option when travel time in the only available network space is reduced 
and the additional detour time incurred becomes more tolerable.  

3.2 Influence of bus demand on solution 

The concurrent use of space by TNCs and buses in network 2 causes inevitable delays for both 
modes. The proposed policy compensates for this delay by allocating a larger space for network 
2. Nevertheless, since buses carry more passengers compared to pooled trips, the marginal 
increase of PHT with n2 is more consequential for buses than for the fraction of TNCs already 
utilizing network 2. It is necessary hence to investigate the demand levels for buses up to which 
our policy continues to be beneficial when compared to the benchmark scenario. Figure 6(a) 
shows that for a given bus demand, the value of dbl + pool minimum PHT continues to be 
approximately equal to that of dbl, with the latter being slightly higher than the former when 
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bus demand is large enough. Despite this, fleet size at optimum is always lower in the dbl + 
pool scenario regardless of the bus demand indicating that platform operators are always 
motivated to reduce fleet size under our policy (Figure 6(b)).  

Figure 6: (a) Variation of PHT with 1 − α, (b) Variation of fleet size with 1 − α for various 
bus demand levels 

  

3.3 Influence of price discount on solution 

Besides travel time, the pooling discount factor is a major determinant of users’ choice to share 
their rides. Since the intervention of the regulator is restricted to changing α, we assess in this 
part how optimal values of α vary with the pooling discount factor set by the platform operator. 
On one hand, a low discount factor implies a larger Qp, and a lower α∗ and N. A high discount 
factor on the other hand means that the platform is not encouraging sharing. In this case, both 
α∗ and N increase, and the benefits derived from policy enactment are limited (Figure 7). This 
is anticipated because, provided that the operator is a revenue maximizer, the objectives of the 
two stakeholders do not necessarily collide.  

To better understand variations of the objective function away from optimal points for various 
discount factors, we look at the PHT values for every available mode m ∈ M (Figure 8). Of a 
particular interest is the PHT for pooled rides which monotonically decreases with α for high a 
discount factor (and hence a low discount) as more users shift to solo rides. Nevertheless, for 
low discount factors, PHT rises at the beginning despite the reduction in network 2 capacity as 
some users continue to share their rides given the price gap between solo and pool trips. For α 
> 0.86 and a discount factor of 0.5, the PHT of pool decreases again as travel time on network 
2 notably grows. Qp does not completely vanish however for low discount factors and hence 
disturbances to bus operations remain significant. This is due to a small fraction of demand that 
continues to pool albeit the deterioration of speed and the high detour distance in network 2.  

3.4 Influence of target time on solution 

Lastly, we considered in our model that the target waiting time is an exogenous variable that e- 
hailing platforms aim to guarantee. Here, we assess how α∗ and PHT change with τ. A lengthy 
waiting time replicates the case of an inefficient service where the number of dispatching 
vehicles is very high which leads to a speed deterioration in network 1. A low value of τ explores 



21th Swiss Transport Research Conference                                       September, 2021 

14 

solutions in the efficient regime where the dispatched distance is small and hence the fleet size 
necessary to serve a given demand level decreases (Figure 9(b)). A moderately low waiting 
time is also beneficial to the entire network because it decreases PHT as shown in Figure 9(a).  

Figure 7: (a) Variation of PHT with 1 − α, (b) Variation of fleet size with 1 − α for various 
pooling discount factor 

  

Figure 8: PHT for different modes with various pooling discount factor 

 

 

Figure 9: (a) Variation of PHT with 1 − α, (b) Variation of fleet size with 1 − α for various 
target waiting time  

  

4. Conclusion 

This paper proposed a network allocation policy that encourages trip sharing in e-hailing 
markets by promising pool users of - on top of trip fare monetary discount - a privileged use of 
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dedicated space where travel time is lower than the rest of the network. By considering overall 
delays of all commuters for different modes, results show that assigning a larger space to 
dedicated bus lanes and pool vehicles guarantees a lower PHT for scenarios where bus demands 
are not too large. It also incentivizes TNCs to reduce the fleet of vehicles because of an increase 
in the number of pooled trips.  

Fs, F p, and subsequently τ and Qrs are all variables that, when subject to no regulations, are 
freely controlled by e-hailing platforms. These platforms will set the fare and provide a fleet 
size that maximizes their own revenues. Future research directions include integrating the 
objective of platform operators when investigating the optimal network split ratio, and to 
provide an optimal solution with a more comprehensive choice model that includes all modes.  
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