
Approaches for real-time train delay prediction

Thomas Spanninger, Alessio Trivella, Francesco Corman
Institute for Transport Planning and Systems, ETH Zurich

thomas.spanninger@ivt.baug.ethz.ch

Predicting the delays of trains in real-time is an active area of research with a consid-
erable amount of literature published in recent years. Moreover, increasing availability
of historic and live train movement data creates new opportunities and challenges for
future research. This paper examines and classifies approaches on train delay predic-
tion in terms of prediction input, type of output, prediction horizon and dynamics
of application. This should clear the jungle of the incredible diversity of approaches
in this lively area of research and will be the initial point of a discussion of certain
advantages and disadvantages of applied methods. Finally we discuss two research
gaps and possible enrichments for future analysis and research.

1. Introduction

Delays of trains are unavoidable in complex railway networks, where different trains use a shared

track infrastructure. Marković et al. (2015) state that train delays in the United Kingdom in 2006

and 2007 can be expressed as costs for passengers of 1 billion pounds. Despite highly optimised

railway timetables, a lot of uncertainty about train punctuality remains due to stochastic factors

influencing train movements. Moreover, a train running behind its schedule is likely to hinder and

block other trains, which is called propagation of delay (knock-on delays).

The arrival or departure delay of a train is measured as a difference between the predefined

scheduled time of the event and its realized time-stamp. Goverde (2007) shows the existence of an

intuitive trade-off between infrastructure usage and vulnerability to delays of a time schedule: the

more trains use the same infrastructure the more likely delays occur.

Railway operators benefit from accurate train delay predictions in many different ways. First

of all, the prediction of future train delays can be communicated to passengers. Being informed

about delays as early and as accurate as possible increases the service quality of railway operators

for passengers significantly, even though delays will clearly not lead to passenger satisfaction. Sec-

ondly, accurate predictions of train delay development are a crucial decision support information for

traffic controllers who try to minimize the propagation of delay in railway networks. Thirdly, delay

predictions are a useful source of information for timetable optimization.

The prediction of train delays and punctuality in railways has been an active area of research

throughout the last decades. Ghofrani et al. (2018) present a survey on big data analytic applications

in railway transportation systems, including a taxonomy of train delay estimation. In contrast to

their review, we focus on approaches for train delay predictions, that are applicable in real-time and

make use of latest available information about live train delays.

In the following section we classify existing approaches for train delay prediction of the literature

focusing on real-time applicable research. Section 3 discusses advantages and disadvantages of various

approaches and propose some rules of thumbs about when and why to use which kind of train delay

prediction approach. Finally, Section 4 gives and outlook for possible future research analysis in the

field of real-time train delay prediction.
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2. Classification of prediction approaches

Our classification of train delay prediction approaches shall contribute to a better understanding

of challenges and complexities in the field of train delay prediction and shall serve as basis for the

discussion about advantages and disadvantages of different approaches. As we focus on approaches

being applicable in real-time, we do not distinguish between descriptive, prescriptive and predictive

models (Karlaftis and Vlahogianni 2011). We classify approaches according to:

i. Mathematical model

ii. Input data

iii. Type of output

iv. Dynamics of application

Figure 1 visualises the criteria of classifications in context of train delay prediction proposed in

this paper and lists attributes, that will be discussed in the following.

Figure 1: Illustration of the classification of train delay prediction approaches.

Many different mathematical models and approaches have been used in literature for the purpose

of train delay prediction. (Robust) linear regression, k-nearest neighbours (k-NN) random trees

(RT), random forest (RF), timed event graph (TEG), time series analysis (TSA), Markov chains

(MC), artificial neural networks (ANN), support vector machines (SVM) or bayesian networks (BN)

are among them.

Concerning input data for the prediction method, we want to distinguish between historic train

movement (HTM), actual delays (AD), infrastructure indicators (II), timetable properties (TP) and

external factors (EF). Almost all approaches take into account observations of realized historic train

movements which include basic information about the rolling stock (train ID, service ID, train cate-

gory) and the general setting (weekday, time of the day). As soon as approaches try to predict delay

development in real-time, actual train delays (AD) of arrival, departure or passing events are an

indispensable input in prediction models. Infrastructure indicators like section lengths are also com-

monly used inputs for predictions of train delays (Kecman and Goverde 2015a, Marković et al. 2015).

2



Some approaches use timetable properties like section specific catch up potential (buffer times), min-

imal headway times, planned connections (Goverde 2010) as explicit source of information. Weather

information is also used as input factor for train delay predictions (Oneto et al. 2018).

Deterministic prediction approaches result in a single value best-estimate amount of delay for

an event. Stochastic prediction models provide probability distributions for future events. Bayesian

networks that graphically model conditional dependencies are a very demonstrative example of ap-

proaches of stochastic predictions (Corman and Kecman 2018). Figure 2 visualises the differences of

dynamically updated stochastic and deterministic prediction outputs (2 updates of predictions for

the same event). The deterministic predictions are represented by the vertical lines at x “ 0, 1 and

0.5. Although the mean of the probability distribution have the same values as the deterministic

predictions, the shape of the density functions provides additional information about the certainty

of this future event as a result of a lower standard deviation.

Figure 2: Illustration of stochastic and deterministic predictions.
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We classify train delay prediction approaches as dynamic if they explicitly include a foreseen

process of prediction update. In contrast, we classify a prediction approach static if there does not

exist a specific procedure of updates (one-shot predictions). Table 1 summarises papers published in

the last 15 years focusing on train delay prediction based on the classifications made above.

3. Discussion

The most important difference between mathematical approaches for train delay prediction is whether

they explicitly model the railway network structure. Approaches like TEGs, MCs or BNs explicitly

model train dependencies whereas purely data driven approaches like linear regression, random trees

and forests as well as SVMs and ANNs have their strengths in implicitly finding these dependencies

in the used dataset. Marković et al. (2015) compare an ANN approach and a SVM approach and

3



Table 1: Summary of the literature focusing on train delay prediction approaches.
References Mathematical Model Used Data Output Dynamics

Peters et al. (2005) ANN HTM deterministic static
Meester and Muns (2007) TEG HTM stochastic static
Hansen et al. (2010) TEG HTM, AD deterministic dynamic
Goverde (2010) TEG AD, TP deterministic static
Murali et al. (2010) Regression HTM deterministic static
Berger et al. (2011) TEG HTM, AD, II stochastic dynamic
Keyhani et al. (2012) TEG HTM, AD stochastic dynamic
Büker and Seybold (2012) TEG HTM stochastic static
Yaghini et al. (2013) ANN HTM deterministic static
Milinković et al. (2013) ANN HTM deterministic static
Bauer and Schöbel (2014) TEG HTM deterministic static
Pongnumkul et al. (2014) TSA, k-NN HTM, AD deterministic dynamic
Lemnian et al. (2014) TEG HTM, AD stochastic dynamic
Kecman and Goverde (2015b) TEG HTM, AD deterministic dynamic
Kecman and Goverde (2015a) RT, RF HTM, II deterministic static
Marković et al. (2015) SVM, ANN HTM, II deterministic static
Wang and Work (2015) TSA HTM, AD deterministic dynamic
Martin (2016) BN HTM, AD deterministic dynamic
Oneto et al. (2016a) ANN HTM, Weather deterministic dynamic
Oneto et al. (2016b) ANN HTM, Weather deterministic dynamic
Oneto et al. (2017) ANN HTM, Weather deterministic dynamic
Sahin (2017) MC HTM stochastic static
Oneto et al. (2018) ANN HTM, Weather deterministic dynamic
Corman and Kecman (2018) BN HTM, AD stochastic dynamic
Lessan et al. (2019) BN HTM, AD stochastic dynamic

conclude that there exists the hazard of overfitting using purely date driven models.

Deterministic predictions clearly have the advantage of being easy to analyse a posteriori by

calculating the difference of the predicted and the realised time-stamp of a certain event. On the

contrary this difference cannot be calculated straight forward with stochastic predictions, since a

probability distribution is assigned to the future event. Predicted probability distributions provide

much deeper insights in the uncertainty of future events. Hence the key questions is whether one

can make use of this additional information provided by stochastic predictions. The application of

stochastic optimization for traffic control models is a perfect example of the usage of stochastic delay

predictions.

If a prediction tool for train delays shall be applicable online in real-time, it needs to be as

computational efficient as possible. Büker and Seybold (2012) point out that the advantage of

relaxed analytical approaches is that they outperform simulation approaches when increasing the

complexity of a network. Purely data driven approaches have the advantage that they can be trained

offline using historical train movement data and be applied in real-time easily.

Only a few papers have analysed the prediction quality for different prediction horizons. Berger

et al. (2011) provide the average difference in minutes for a prediction horizon of 30 to 240 minutes,

which increases from 4 to 6.5 minutes depending on the specification of their approach. Kecman and

Goverde (2015a) show that the mean absolute error (MAE) for a 0 to 20 minutes prediction horizon

increases from 0 seconds to 40 seconds and stays at this level until a prediction horizon of 120 minutes.

Additionally, they show that their real-time prediction tool outperforms a deterministically constant
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propagation of delays (parallel shift) significantly for any prediction horizon between 0 and 8000

seconds. Oneto et al. (2018) differentiate the prediction horizon in terms of stations ahead and show

that for stations 1 to 5 the average accuracy is 1.5, 1.6, 1.8, 2.1 and 2.2 minutes respectively using

their ANN purely data driven dynamic prediction approach. Corman and Kecman (2018) are able

to show that their BN approach provides stochastic predictions where the MAE measures on the

expected value increases from 0.5 minutes to 1.4 minutes for a prediction horizon of 0 to 60 minutes.

As a result of the improvement of prediction methods in the processing of actual train delay data,

the dynamics of prediction updates has become very important. Generally speaking, it is worth

reproducing predictions whenever new information becomes available, which increases the quality of

the prediction. As current delays are the biggest source of future delays, online prediction approaches

should be repeated whenever information about a train delay/status is available. Nevertheless, also

uncontrollable external factors like weather changes could result in a dynamic rule for a prediction

approach.

4. Conclusion and future research possibilities

Analysing and classifying existing approaches of train delay prediction gives two interesting insights.

First, there is only little research on the prediction quality along the prediction horizon. Only

Kecman and Goverde (2015a) and Corman and Kecman (2018) include some analyses on that research

question. There is the need to analyse which models give the best prediction quality in which

prediction horizon. This analysis should take into account the computationally efficiency and lead

times of possible railway traffic management actions.

There is a high amount of literature on the robustness and resilience of railway timetables.

However, only few approaches of train delay prediction take into account parts of railway timetable

quality measurements (e.g. buffer times allocated to running and dwell times, statistical probability

of a connection to be broken and signals that significantly often imply slow driving or stopping).

Goverde (2010) is one of few examples that explicitly take into account buffer times of scheduled

running times to model the catch up potential of delayed trains explicitly. There is clearly the

need to analyse deeper, whether explicitly taking into account different types of timetable quality

measurements can further increase the prediction quality in railway systems.
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