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Abstract

We present an application of a discrete choice modeling framework with heterogeneous decision
rules to a Swiss mode choice case study. The proposed framework formally accommodates
the heterogeneity of people with respect to the decision strategies they follow when making
choices. It draws insights from the fields of cognitive and mathematical psychology, marketing
and consumer research, economics and behavioral decision theory, and embeds normative as
well as heuristic decision rules in the formulation of finite mixture models.

In this simple application, we present a model that accounts for non-trading behavior, as
to heuristic rules, and distinguishes it from compensatory behavior that is represented by the
normative rule of utility maximization. The specification includes a class-membership model that
depends on the socio-economic characteristics of the respondent and the influence of important
context variables, the latter being accumulated in a relative advantage (RA) component. The
preliminary results demonstrate the presence of non-trading behavior in the sample and an
improvement in the model fit —in comparison with the simple multinomial logit model— when
accounting for it.

Keywords
Decision-making processes; Discrete choice modeling; Heterogeneity in decision-making pro-
cesses; Heuristics
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1 Background and context

As well argued by Balbontin et al. (2017), the outcome of a decision process —i.e. the choice
itself— is equally important to the underlying process adopted by the individual in order to
make the decision. The former has nevertheless received undoubtedly more attention than the
latter in the context of discrete choice modeling (DCM) for demand analysis. While numerous
studies have analyzed demand accounting for taste/preference heterogeneity, less studies have
tackled the inter- and intra-personal heterogeneity in the decision-making processes (DMPs).

A common distinction of the DMPs within the DCM framework is between: (i) the optimal or
normative decision rules and (ii) the suboptimal decision rules or heuristics1 . Optimal decision
rules entail the use of some optimality criterion that is usually associated with higher complexity,
while heuristic rules connote the omission of part of the information by the individual in order to
make decisions faster and simpler. The underlying assumption of the former has its foundations
in economics; individuals are rational, have almost complete information and sufficient capacity
to process it and make trade-offs in order to arrive at an optimal choice. The underlying
assumption of the latter is that individuals have cognitive constraints and cannot/do not process
the full information contained in the choice tasks.

Generally, optimal decision rules are associated with compensatory choice behavior, while
heuristic rules with non-compensatory choice behavior. Individual choice behavior within the
DCM framework is mostly assumed to be optimal/fully compensatory. Individuals are commonly
treated as utility maximizers or, less often, regret minimizers in a linear-in-parameters and
additive-in-attributes approach. Evidence about which type of rules people use is mixed though
(Shen and Ma, 2016) and combinations or coexistence of both types are possible, prompting
semi-compensatory modeling approaches. One example is the two-stage choice paradigm
(Manski, 1977), where individuals are assumed to use a simple screening rule (heuristic) at a
first stage in order to reduce the choice set (first-stage elimination), followed by a second stage
compensatory choice process (Cantillo and de Dios Ortúzar, 2005).

Recently, following works that have investigated alternative rules as competing to each other
(e.g. Collins, 2012, Chorus et al., 2014, Hess et al., 2014, Belgiawan et al., 2019), more and
more studies identify the need to integrate more than one decision process in the formulation of
DCMs, in order to explain diverse behavior in subgroups of the population (see e.g. Elrod et al.,

2004, Hensher and Greene, 2010, Zhu and Timmermans, 2010, Hess et al., 2012, Leong and
Hensher, 2012, McNair et al., 2012, Hess and Stathopoulos, 2013, Hensher et al., 2013, Boeri

1The terms decision process, decision strategy and decision rule are used interchangeably in this paper.
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et al., 2014, Balbontin et al., 2017, Hensher et al., 2018, Dey et al., 2018, Balbontin et al., 2019).
Yet, there is still broad scope for work towards an integrated framework that systematically
considers various decision rules.

“We must continue to find ways to embed more realistic processing heuristics or

rules in ways that will, in time, make it easy and become standard practice in real

world applications. It would be interesting to test this form in other datasets to see

if there is a common pattern with the process strategies." (Hensher et al., 2018)

We aim at contributing in the current literature by operationally combining traditional microeco-
nomics with behavioral economics and quantitative psychology to better explain the variations
in the demand formation by modeling the distribution of the decision rules in a population. Our
goal is to develop a unified discrete choice modeling framework that formally accommodates
the heterogeneity of the individuals with respect to the underlying decision-making processes, in
the formulation of finite mixture models. We are currently conducting a comprehensive literature
review in the areas relating to decision-making processes. The objective is to identify and
summarize the prominent (i) optimal and (ii) heuristic decision processes, with a particular focus
on (a) how they are currently modeled and (b) how they are applied in practice to derive elastici-
ties and willingness-to-pay measures within the DCM framework. In general, the framework
has a keen eye for practical real world applications and deliberates the importance of context

dependence in the relevance of the decision rules, as pointed out by Hensher (2019). For the
purposes of the study, we adopt the classification of the DPMs and the modeling approaches
into (a) compensatory, (b) non-compensatory (c) and semi-compensatory.

In this paper, we present a first, simple application of the framework to a Swiss stated preference
(SP) mode choice dataset. It integrates compensatory and non-compensatory decision rules and
tests for contextual effects on the selection of the decision strategy by the individual. Evidence
from the data suggests the presence of two types of respondents, manifesting trading and non-
trading choice behavior, respectively. Non-trading behavior refers to the case where a respondent
always chooses the same alternative across choice situations (Hess et al., 2010). Hess et al.

(2010) discuss the possible drivers behind such behavior. These include: (i) strong preference
towards a particular alternative, albeit utility maximizing respondent, (ii) non-trading heuristic
employed by a non-utility maximizing respondent due to fatigue, boredom etc., and (iii) some
sort of political or strategic behavior, such as never choosing a tolled road alternative. The
authors argue that respondents in the first category, i.e. utility maximizers with strong preference
towards a specific alternative should not be excluded from a utility maximizing model, while
those in the other two categories should ideally be identified and excluded from the model in
order to avoid biases in the estimation of measures such as willingness to pay. They acknowledge
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the fact though that, in the majority of cases, it is not possible to distinguish the different types
of non-traders among each other.

The proposed framework treats non-trading behavior as the outcome of a non-compensatory
decision strategy and accommodates it appropriately in the formulation of the model, rather than
excluding it from the model estimation. Here, we present a mixture model that involves two
classes of respondents, accordingly denoted as traders and non-traders. A relative advantage
(RA) component (Leong and Hensher, 2014) is incorporated in the specification of the class-
membership model (CMM) —along with socio-economic characteristics of the respondent—
assuming that the manifestation of non-trading behavior may be driven by the context, and more
specifically the RA of one’s preferred mode in the experiment with respect to the remaining
alternatives.

The remainder of the paper is organized as follows. Section 2 discusses the conceptual framework.
Section 3 presents an application of the framework to a Swiss case study. Section 4 summarizes
the first findings of the work.

2 Probabilistic decision process model

Some of the works that provide the theoretical background for the conceptual framework include
Payne et al. (1993), who provide a typology of decision-making processes and Hensher et al.

(2015), who present an extended review of decision heuristics in the context of preferences.
A comprehensive review of decision heuristics within the DCM framework with SP data is
presented by Leong and Hensher (2012). After discussing the contribution of decision heuristics
and contextual effects in explaining choice behavior, the authors suggest that a logical way
forward would be to “consider the use of mixture models, where multiple heuristics are weighted

in a utility function, using weighting functions that depend on the socio-economic characteristics

of the respondent and other choice context variables, including individual-specific perceptions

data, where available." This work adopts such an approach.

The operational framework builds upon the state-of-the-art finite probabilistic mixture models,
under the assumption that each sub-population is associated with a specific underlying decision
process. This assumption gives rise to a probabilistic decision process (PDP) modeling approach2

(see e.g. McNair et al., 2012). The probability that an individual n choses alternative i given the

2This is essentially a latent class modeling approach, where each class is characterized by different preference
measures, as a result of the differences in the underlying decision process.
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choice set of alternatives Cn and the set of possible decision processesD is defined as

P(i | Cn) =

D∑
d=1

P(d) · P(i | d), (1)

where P(d) denotes the probability that n adopts decision rule d to make a choice, P(i | d) the
probability that n chooses i given that she follows decision rule d and D the number of decision
processes. P(d) can be modeled as a function of decision-maker’s characteristics, choice context
variables, as well as (depending on availability) individual-specific attitudinal/perceptual data
(see e.g. Hess and Stathopoulos, 2013).

3 Playground

We use data from a SP survey for mode and route choice behavior that was conducted in
Switzerland in 20153. We focus on the mode choice experiments of the survey. Each respondent
was presented with a choice set of 2-3 alternatives, depending on her availability of transport
means and her reported (last) trip for a specific trip purpose. In total, four modes appear in the
experiments: (i) walking, (ii) bike, (iii) car and (iv) public transport. The data about the RP
choice for the trip in question is also available, along with the socio-economic characteristics
of the respondent and her indications about which attributes of the alternatives she considered
unimportant for making a choice. 4.

The sample concerns 1522 respondents generating 1522 × 8 = 12176 observations —after
excluding (i) the observations from the pre-tests, (ii) respondents who did not report their
household income and (iii) those who did not answer all 8 experiments in the design.

3.1 Context

Approximately 55% of the retained respondents systematically chose their RP choice across all
8 experiments. The data exhibits some sort of non-trading behavior, where respondents tend to
chose the mode of transport that corresponds to their recent experience (Hess et al., 2010) or

3Data source: Stated preferences surveys for transport behavior 2015, Federal Office for Spatial Development
ARE, Bern, 2017, http://www.are.admin.ch/statedpreference. We refer the reader to Weis et al. (2016) for more
details regarding the survey design and the dataset.

4This study uses the socio-economic characteristics of the respondents. The rest of the available data may be used
in the future for further developments of the model.
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to their habitual mode. For each individual in the sample we compute the level of persistence
of choosing her RP choice across the SP experiments; that is if n chooses her RP choice four
times out of the 8 experiments, her persistence is 50%. Individuals with high persistence could
belong to the first category of non-trading behavior, identified in Hess et al. (2010); these
are utility maximizers with strong preference towards one alternative. The rationale is that
those individuals would tend to choose their preferred alternative unless another alternative is
much more attractive with respect to important attributes (e.g. time and cost) or possibly all
of the attributes (fully compensatory behavior). The same may hold for some, or all, of the
individuals with 100% persistence to their preferred alternative that strike as strong non-traders.
Subsequently, we assume that non-trading behavior may not be merely inherent but likely to
be triggered by the context. In order to test this assumption, we incorporate a RA component
—capturing the context dependence— in the class-membership model, along with the socio-
economic characteristics of the respondent —reflecting the inherent tendency for non-trading
behavior. This is contrary to the traditional use of the RA model, where the RA component
is included in the utility functions of the alternatives to capture the context dependence of
preferences. Here, we evaluate the influence of the context on the choice of a decision rule.

3.2 Modeling set-up

The base model is a multinomial logit model (MNL). It assumes that the utility maximization
rule and compensatory behavior holds for all respondents:

0. MNL

Its first extension concerns the inclusion of the two latent classes (i) traders and (ii) non-traders
with equal probabilities wd for all n to belong to a class (Model 1) —wd a parameter to be
estimated:

1. LC model with equal weights wd for all n in the sample

P(i | Cn) =

D∑
d=1

wd · P(i | d),

where P(i | d) is the class-specific model (CSM) specified as a MNL. The utility functions of
the alternatives for the traders are defined on the basis of attributes of the alternatives xin. For
non-traders, Vi = 0 if i is the preferred alternative p of n, i.e. if i corresponds to the reported
chosen alternative for the specific trip in the RP data, and Vi = −∞, otherwise.

5
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The next extensions concern the specification of class-membership models (CMMs) starting
with the inclusion of the socio-economic characteristics of the respondent and followed by the
specification and inclusion of the RA component:

2. LC model with CMM specified as a binary logit model based on the socio-economic
characteristics zn

P(i | Cn) =

D∑
d=1

P(d)·P(i | d),where P(d) is given by a logit model with Vtrader = 0 and Vnon-trader ∼ zn

3. LC model with CMM based on zn and the RA component

P(i | Cn) =

D∑
d=1

P(d)·P(i | d),where P(d) is given by a logit model with Vtrader = 0 and Vnon-trader ∼ zn + RA

and P(i | d) same as before.

For the definition of the RA component we adopt the formulation described by Leong and
Hensher (2014)5. We define the relative advantage RA of the preferred alternative p with respect
to each alternative j , p in the choice context as

RA(p, j) =
A(p, j)

A(p, j) + D(p, j)
, (2)

where A(p, j) =
∑

k Ak(p, j) and D(p, j) =
∑

k Dk(p, j) are, respectively, the overall advantage
and disadvantage of p over j over all relevant attributes k. The advantage of p over j with respect
to k is defined as Ak(p, j) = Dk( j, p) = ln[1 + exp(βpkXpk − β jkX jk)], if vk(Xpk) ≥ vk(X jk), and
zero otherwise, with vk(X jk) being the utility of attribute k for alternative j. Finally, the overall
RA of p over all j , p is

∑
j RA(p, j).

The CMM model is then

Vtrader = 0, (3)

Vnon-trader = β0 +
∑

zn

βznzn + θ
∑
j,p

RA(p, j), (4)

where the parameter θ captures the weight/importance given to the RA component (see Tversky
and Simonson, 1993).

5Earlier formulations of the RA model can be found in Tversky and Simonson (1993) and Kivetz et al. (2004)
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3.3 Model specifications

Table A1 shows the four model specifications. The CS specification is the same across all
models. Alternative specific parameters are specified for all attributes. We define a piecewise
transformation of the walking time attribute, with a threshold value at 30 minutes. Furthermore,
the in-vehicle time of public transport is specified as(
βinVehTime + β

high/overloaded
crowd×inVehTime × high/overloaded

)
× inVehTime

to account for the additional effect of discomfort due to crowdedness on the perception of travel
time. Finally, we have defined two dummy variables for headways of maximum 10 minutes
(high frequency) and more than one transfers for the public transport alternative.

The CMM assumes that high-income, senior males and owners of driving license and public
transport subscriptions are more likely to be non-traders. The RA component in this study is
computed based on the total time and total cost of the alternatives6. Generic parameters are
specified for these two attributes (βpk = β jk).

3.4 Estimation results

The four model specifications are first estimated ignoring the panel nature of the data. Panel
effects are then added to all model specifications, accounting for the necessary normalizations.
The models are eventually estimated with 500 Halton draws, using the parameters of the first
estimation as starting values. The output of Models 0 to 2 is shown in Tables 1 and 2, presenting
the goodness of fit and the estimated parameters, respectively. We are currently facing numerical
issues in the estimation of the most advanced specification (Model 3) with the RA component.

Models 1 and 2 demonstrate significant improvement in the goodness of fit in comparison with
the MNL model, while Model 2 with the specification of the CMM further outperforms Model 1.
All the estimated parameters in Table 2 exhibit the expected signs. With the exception of some
constants, and the parameter associated with the high frequency for public transport in Model
2, all parameters of the CSMs are significant. We have chosen to keep all the socio-economic
characteristics of the respondent in the CMM of Model 2, despite the fact that the parameters
associated with the gender, high income and the driving license are not significant at the 95%
confidence level (they are significant at 90%). The reason is that we want to have a complete

6Remark: The attribute values of p are taken from the experiment, not from the RP data.
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segmentation of our sample with respect to important characteristics in the final model (Model
3) so that we are able to comment on it (once the numerical issues are solved).

It is interesting to observe the fluctuation of the non-trading component. Obviously, the MNL
assumes that all individuals are trading. Model 1 suggests that each individual is by 75%
trading and by 25% non-trading (equal for all individuals in the sample). Model 2 increases
the non-trading component to 49% on average —in this case each individual has a different
probability to belong to each component due to the specification of the CMM. This percent
is lower than the percent of respondents that appear to be strong non-traders (55%) based on
their persistence of choosing their RP choice in all 8 experiments. We are awaiting the result of
Model 3 to be able to comment on how much this persistence can be attributed to an underlying
non-trading behavior or could possibly be affected bythe experimental setup.

4 Summary

We have presented a discrete choice modeling framework of heterogeneous decision rules
that accounts for non-trading behavior and distinguishes it from compensatory behavior that
is represented by the utility maximization decision rule. The approach is applied to a Swiss
SP mode choice case study. It employs a CMM specification that depends on the socio-
economic characteristics of the respondents and the effect of important context variables that
are accumulated in a RA component. The first results demonstrate the presence of non-trading
behavior in the sample and an improvement in the model fit when accounting for it.

We are currently working on solving the numerical issues in the estimation of the model with

Table 1: Summary of goodness of fit

Model 0 Model 1 Model 2 Model 3

description MNL LC with equal wd ∀n LC with CMM LC with CMM and RA
# of draws 500 500 500 500

# of parameters 20 24 30 33
# of observations 12176 12176 12176 12176

# of individuals 1522 1522 1522 1522
L(β̂) −4583.13 −4408.70 −4164.50 ×

8
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Table 2: Estimation results

parameter? Model 0 Model 1 Model 2 Model 3
class-specific ASCWALKtrader 6.64 (6.50) 6.51 (4.13) 1.13 (1.14) ×

ASCBIKEtrader −0.02 (−0.03) 5.70 (5.27) 1.93 (1.81) ×

ASCCARtrader 2.29 (6.46) 2.75 (3.22) 0.45 (1.09) ×

ASCPTtrader 0 0 0 ×

βfuelCosttrader −0.36 (−7.96) −1.00 (−3.69) −0.46 (−4.38) ×

βparkingCosttrader
−0.51 (−16.21) −1.38 (−9.04) −0.77 (−9.92) ×

βtolltrader −0.28 (−5.73) −0.97 (−4.59) −0.42 (−4.32) ×

βticketCosttrader −0.27 (−6.60) −1.06 (−3.59) −0.42 (−6.50) ×

βwalkTime≤30min
trader

−0.34 (−7.67) −0.49 (−6.95) −0.20 (−4.29) ×

βwalkTime>30min
trader

−0.10 (−4.19) −0.49 (−9.28) −0.26 (−4.75) ×

βcycleTimetrader
−0.20 (−12.20) −0.94 (−11.59) −0.41 (−8.35) ×

βdrivingTimetrader
−0.14 (−10.33) −0.49 (−8.24) −0.24 (−8.79) ×

βparkingTimetrader
−0.20 (−5.91) −0.52 (−5.22) −0.26 (−4.90) ×

βinVehTimetrader −0.13 (−14.62) −0.41 (−11.09) −0.21 (−8.65) ×

β
high/overloaded
crowd×inVehTimetrader

−0.09 (−7.83) −0.09 (−4.83) −0.05 (−4.72) ×

βaccessTimetrader −0.17 (−8.24) −0.55 (−9.63) −0.26 (−7.03) ×

βhighFreq≤10min
trader

1.13 (3.75) 1.33 (2.10) 1.57 (1.17) ×

βnumTranfers≥2
trader

−0.72 (−4.56) −2.17 (−3.57) −0.96 (−3.67) ×

panel effect ωWALKtrader 0 0 0 ×

ωBIKEtrader 8.11 (10.79) 14.8 (10.56) 5.87 (6.62) ×

ωCARtrader −3.69 (−13.99) 7.37 (9.50) 1.55 (4.45) ×

ωPTtrader 2.79 (12.15) 7.05 (31.44) 2.58 (7.00) ×

ωWALKnon-trader - 0 0 ×

ωBIKEnon-trader - 2.21 (5.31) −2.43 (−1.57) ×

ωCARnon-trader - 12.00 (22.04) 10.5 (9.88) ×

ωPTnon-trader - −0.78 (−2.73) −1.76 (−1.95) ×

? Value of estimated parameter (robust t-test)

the RA component. We are also interested in the effect that the deviation of the choice context
attributes from the real trip attributes may have on the manifestation of non-trading behavior.
This can be done once again by means of a RA component specification. Finally, a critical
aspect of the probabilistic decision process modeling approaches concerns the computation of
policy indicators, such as the value of time. We are going to investigate the implications that the

9
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Table 2: Estimation results (continued)

parameter? Model 0 Model 1 Model 2 Model 3
class-membership wtrader 1 0.75 0.51 (average) ×

wnon-trader 0 0.25 0.49 (average) ×

ASCtrader - - 0 ×

ASCnon-trader - - −0.42 (−0.48) ×

βmalenon-trader - - −0.32 (−0.58) ×

βhighINCnon-trader
- - 1.57 (1.84) ×

βsenior≥55
non-trader

- - 1.32 (2.28) ×

βdrivernon-trader - - 1.30 (1.62) ×

βABOnon-trader - - −2.49 (−3.30) ×

RA component θ - - - ×

βtotalCost - - - ×

βtotalTime - - - ×

panel effect ωtrader - - 0 ×

ωnon-trader - - 6.39 (7.12) ×

? Value of estimated parameter (robust t-test)

deviation from the standard random utility model entail for the derivation of such indicators.
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A Model specifications
Table A1: Specification table

parameter Model 0 Model 1 Model 2 Model 3
class-specific ASCWALKtrader 1 1 1 1

ASCBIKEtrader 1 1 1 1
ASCCARtrader 1 1 1 1

ASCPTtrader 0 0 0 0
βfuelCosttrader 1 1 1 1

βparkingCosttrader
1 1 1 1

βtolltrader 1 1 1 1
βticketCosttrader 1 1 1 1
βwalkTime≤30min

trader
1 1 1 1

βwalkTime>30min
trader

1 1 1 1

βcycleTimetrader
1 1 1 1

βdrivingTimetrader
1 1 1 1

βparkingTimetrader
1 1 1 1

βinVehTimetrader 1 1 1 1
β

high/overloaded
crowd×inVehTimetrader

1 1 1 1
βaccessTimetrader 1 1 1 1
βhighFreq≤10min

trader
1 1 1 1

βnumTranfers≥2
trader

1 1 1 1
panel effect ωWALKtrader 0 0 0 0

ωBIKEtrader 1 1 1 1
ωCARtrader 1 1 1 1
ωPTtrader 1 1 1 1

ωWALKnon-trader 0 0 0 0
ωBIKEnon-trader 0 1 1 1
ωCARnon-trader 0 1 1 1
ωPTnon-trader 0 1 1 1

class-membership wtrader - X X X

wnon-trader - X X X

ASCtrader - - 0 0
ASCnon-trader - - 1 1
βmalenon-trader - - 1 1

βhighINCnon-trader
- - 1 1

βsenior≥55
non-trader

- - 1 1

βdrivernon-trader - - 1 1
βABOnon-trader - - 1 1

RA component θ - - - 1
βtotalCost - - - 1
βtotalTime - - - 1

panel effect ωtrader - - 0 0
ωnon-trader - - 1 1
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