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Abstract

Destination choice models are a key component of any transport and land use model, for scenario
evaluation and forecast. Destination choice models describe highly complex decisions between
spatially distributed alternatives. Employed explanatory variables usually include generalized
travel cost for available transport modes, personal attributes such as age, income and also
situational attributes like trip purpose. New kind of destination choice models account for
information on individuals and exploit agent-based modeling advantages. In existing literature,
already applied methodologies often stem from econometrics, discrete choice theory and utility
maximization; estimating parameters on revealed or stated individual choice behavior.

This paper contributes to a remaining gap of complementary data integration, focusing on
empirically measured cross-sectional flows in destination choice models: While earlier work
(Vitins et al., 2016) focused on destination capacity constraints, this paper presents a framework
to additionally integrate cross-section flows between distinct geographic areas as additional
constraints. This allows choice model optimization against cross-section transport flows which
can be obtained from a cordon surveys or mobile phone data. Proposed optimization methodology
– based on extended shadow price theory – accommodates these complementary data sources.
The new generic and robust optimization methodology improves destination choice modeling and
quality while maintaining econometric theory. As a proof of concept, suggested methodology is
applied successfully in a real-case agent-based application covering the tri-national Basel region,
an urban agglomeration with about 2 million residents and a large set of 2 · 104 destination
alternatives. Improvements are up to 20% and more on a cross-section level and even higher on
a choice alternative level, compared to calculations ignoring shadow prices.
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1 Introduction

Destination choice assigns individuals with defined characteristics to destinations where they
perform a planned activity. Destination choice therefore defines origin and destination pairs
(OD) for activities such as home, work, education, shopping. In aggregated form those OD pairs
sum up to massive flow between certain geographic areas. In microeconomics and econometrics,
destination choice mirrors trip decisions of specific characteristics, and highly affects plans of
individuals, households or firms. Destination choice therefore characterizes market behavior
and potential for many mobility services and business locations. Destination choice also drives
various economic processes and societal structures due to the massive sums of generated trips
and flows. In macroeconomics, destination choice affects social welfare through accessibility
and productivity changes (e.g. Venables, 2007). Accessibility to additional destinations increase
productivity e.g. in agglomeration areas, and therefore increase welfare. Destination choice
applications allow to account for short- and long-term revenue based on adapted or new trips as
well as induced demand due to modified or new mobility services, transport infrastructure and
spatial distribution of activity locations.

From a technical perspective, destination choice is often firmly embedded in travel demand
modeling and transport modeling in general, and a key component for overall calculation of traffic
flows and travel demand. It interferes with practically all other travel choices such as mode choice,
departure time, or route choice, and therefore rises complexity on integration. Destination choice
influences global and aggregated values such as distance distribution, vehicle-miles-travelled
(VMT) and network flows. Therefore, it also affects practically all mobility scenario, forecast
calculations and evaluations.

1.1 Embedded destination choice

Destination choice models are often key components of a larger travel demand model and
transport simulation. In our case study, the proposed destination choice model is embedded in a
large-scale activity- and agent-based travel demand model. An overview of the entire demand
generation methodology is given in Figure 1 with arrows indicating some main dependencies of
model elements, and dotted arrows indicating potential feedback loops. As a basis, all agents
and their home locations are georeferenced on the basis of individual buildings and define a
synthetic population with differing personal attributes (top of Figure 1). Proposed destination
choice model assigns workplaces and school locations to corresponding working population
and students, whereas this assignment is the main content of this paper. This paper focusses
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Figure 1: Outline of travel demand calculation with embedded workplace choice model.
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specifically on commuters, however, also students of three different age groups are assigned
to school locations with basically the same methodological procedure. Afterwards, activity
chains are assigned to all agents to determine additional, secondary activities, duration and
time. Secondary location choice assigns activity to georeferenced locations, considering activity
purpose. Mode choice model assigns an initially chosen transport mode to each individual trip,
which is later optimized using MATSim.

From the supply side, above activity-based model is coupled with the high-performance, agent-
based and multimodal transport simulation MATSim (Horni et al., 2016), including modules
for simulations such as autonomous transport services. Additionally, feedback loops can return
information to the activitiy-based model, such as travel time, for e.g. demand calculation
refinement including destination choice, or scenario calculations.

1.2 Destination choice in travel demand modeling

This section highlights selected research in transportation related to destination choice. Destina-
tion choice builds up on the idea of individuals having a choice between different destination
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alternatives, normally a finite set of distinct choice alternatives. This individual choice suits to
micro-econometric choice theory (e.g. Ben-Akiva, 1973; McFadden, 1974). Utility maximization
theory assumes different utilities among choice alternatives, and decisions depending on utility
maximization of individuals. Those models are usually implemented using a logistic regression
or logit model approach. As in other choice models, explanatory choice variables normally refer
to categories of destination quality, personal variables, situational variables or a combination of
them, e.g. car availability, car-only accessibility at a given destination can affect preferences for
distinct destination and location of discretionary activities. Individual attributes might affect
choice behavior and preference for a specific destination type, such as high income relates to
specific economic sectors (Vitins et al., 2016). As in other choice models, outcomes are used for
enhanced model evaluations e.g. for elasticities, or for superimposed transport models.

There are many model applications for destination choice. Activity-based models often include
destination choice as part of activity chain definition, besides other choice models, such as
out-of-home choice, mode choice, route or departure time choice. Vovsha et al. (2004) and
Rasouli and Timmermans (2014) presented a comprehensive overview of activity-basedmodeling.
Examples are DaySim (Bradley et al., 2010), ActivitySim (ActivitySim, 2019), SimMobility
(Adnan et al., 2016) or CEMDAP (Bhat et al., 2004), all having a slightly different focus on e.g.
required data sources, underlying activity theory, modeling framework, econometric foundation,
and software applications. Many examples exist for activity-based theory. E.g. Bowman and
Ben-Akiva (2001) proposed an activity-based disaggregate travel demand model integrating
individual choices from a travel demand perspective. They applied a nested form of multiple tiers
for multi-dimensional choice processes. Activity patterns, tours and time of day are estimated
with choice models as well as primary and secondary destination and mode choice. Techniques
are among others multinominal and nested logit models, and alternative sampling for destinations.
Here, it is added that destination choice is a process of activity modeling and decoupled from
supply modeling and simulation. Destination choice models, and also proposed methods, are
therefore applicable for agent-based demand modeling, such as MATSim, or for aggregated
models.

Above citations show how destination choice is embedded in a set of interfering individual travel
choices. While the traditional four step model (e.g. Ortuzar and Willumsen, 2011) sequentially
separate main travel choices and calculates all travel choices independently and recursively, one
also argues that the choices should be seen as an entity of non-separable choices (e.g. Ben-Akiva,
1973). Given the complexity of the different, interfering choices and simultaneous calculation,
it is clear that a complete inclusion and interaction of all factors is not achieved yet also when
looking at the current research state. We are therefore at a stage where we implemented certain
integrated models (e.g. Ben-Akiva, 1973; Adler and Ben-Akiva, 1976; Fotheringham, 1986,
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and many more). Currently, it seems that computational power to estimate and to apply these
models is still a constraint in practical applications and requests deliberate model decisions
when applying theory in practice. Besides, also data availability is limited and limits model
applications, e.g., census costs are very high for travel data, and personal data is often restricted
for certain sources (e.g. mobile phone data).

1.3 Utility-based approach

In econometric choice theory, individuals decide independently about their destinations, based
on alternatives’ estimated utilities. In choice theory, a utility-based approach can account for
generalized travel costs, destination quality, personal and situational variables. A range of
literature exists on destination choice and probabilistic choice models. Exemplary, (1a) shows the
general logit formula with utility u, coefficients β, alternative specific (transformed) attribute X .
(1a) can be refined for generalized utilities, and other utility functions; (1b) describes multinomial
logit assumptions.

pi =
eui∑
j eu j

(1a)

and for MNL with: ui = β0,i +
∑

k

βk Xi,k (1b)

Ben-Akiva and Lerman (1985) defined a multi-dimensional choice where individuals not only
choose between workplaces but also between residential locations; and overall utility includes a
sum of utilities of all dimensions, including the combination of dimensions (e.g. for generalized
travel costs). Their approach is similar to a two-sided or doubly constraint approach (Section
1.4). Since a nested logit model is proposed to solve this multi-dimensional choice formulation,
ordering of choice dimensions needs to be discussed for both location and workplace choice.
For this reason, different papers have proposed different hierarchies, e.g. workplace choice as
exogenous, or simultaneous decision (e.g. Waddell, 1993).

In the following, several aspects are listed especially relevant for destination choice, which
complicate choice behavior:
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1. Primary destination choice such as workplace choice is not only an individual’s choice, but
a two sided agreement between employers (and their locations) and employees, restaurants
and customers or sport facilities being useful for certain activities. It is therefore not a
pure and isolated individual’s choice.

2. Potential capacity limitations at destination alternatives are unknown to individuals and
cannot be considered in their decision process to a full extent. E.g. because of negative travel
utility, individuals prefer closer locations with a certain probability. However, unevenly
distributed origins (home locations) and destinations (e.g. workplaces, unevenly distributed
professions) impede such trips to the shortest location due to potential overcrowdedness or
availability and suitability of a location. This leads to market competition for attractive
and popular workplaces.

3. Also, it is not a priori guaranteed that there is an equilibrium situation, on an individual
level and on a firm level, respectively. On a firm level, one cannot, a priori, assume a
market clearing situation for workplace location choice (e.g. McFadden, 1977; de Palma
et al., 2007).

Technically, additional aspects arise with a utility-based choice model:

4. Destination choice models heavily depend on survey data. Whenever survey data is
stratified, or biased on spatial attributes, it can be assumed that certain behaviors are not
well captured for a given stratum within the model. It is possible to overcome this problem
by estimating parameters for under-represented strata, but a certain parameter bias can
be expected to persist during estimation, leading to a bias in destination choice model
applications.

5. Recent, very elaborate, discrete choice models can deal with complex choice situations,
e.g. spatial correlation (see also Section "Spatial correlation"). However, it is still possible
that not all correlations are actually captured within the model, making systematic errors
possible.

6. Perception of generalized travel costs might not be proportional to actual costs. One can
assume that perception might be approximated with complex functions, but residual errors
might still remain and bias modeling outcome (Bekhor and Prashker, 2008; Vovsha et al.,
2012).

7. In case of commuting, contracts between employer and employee avoid overcrowdedness
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at job locations. In case of school trips, assignments to school avoid overcrowdedness
at school locations, in case of restaurant trips or recreational activities such as tennis,
reservations and refusals prevent from overcrowdedness. Therefore, we need to implement
such mechanisms also in our model where needed and meaningful.

8. For geographic areas that include borders, additional factors capturing the resistance to
choose a location in another geographic area or language area might need to be included
in the model.

9. Even if a model is fitted on a representative data set, parameter values might have to be
changed in scenario applications. For scenarios with changing destination capacities,
commuters might not be completely reassigned to all changing destinations due to
influences of generalized travel costs on choice behavior.

1.4 Gravity models

The gravity model, widely and traditionally applied in transport modeling, mirrors gravitational
attraction and repulsion, and is often seen as alternative to a logit based model formulation.
Exemplary, (2) shows a basic gravity model where Oi are trips originating from i, D j trips
terminating in j, f (di,j) an impedance based on trip impedance such as distance (or time), and
gravitational parameter G.

Ni,j = G
OiD j

f (di j)
(2)

In traditional models, origin destination flows are fitted with a matrix-fitting method (e.g. Deming
and Stephan, 1940). Marginal totals of all origins and destinations are exogenous inputs, for each
considered trip purpose and person class. Examples are number of trip origins (‘production’) or
workplaces at destinations (‘attraction’). Origin-destinaiton matrix elements are mutated such
that matrix marginals fit with exogenous origin and destination marginals. An advantage of this
approach is its robust procedure and forced convergence to the lowest overall marginal deviation.
A difference to choice models is the underlying gravitational assumptions mirroring physical
laws.

Anas (1983) showed that the logit model of joint origin-destination choice is consistent with
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a doubly constrained gravity model. For comparison, the logit model implements a joint
origin-destination zone pair choice and adds capacity constraints to both origins and destinations.
It is remarkable that both approaches are equivalent views on the same problem, but with
separate theoretical justification. Gravity models refer to information minimization and entropy
maximization, while behavioral modeling refers to utility maximization and potentially explores
individual utility in more advanced formulations. In the meanwhile, especially utility-based
choice models have evolved in transportation theory and application; and developments have
reproduced more detailed behavioral characteristics.

1.5 Market models

Market models are additional methods applied for destination choice. Especially market
situations differ from a choice situations described in MNL (1b), also in the case of destination
choice applications. There is difference between primary destination choice for residence, firms,
commuters or scholars, and secondary destination choice for shopping and leisure activities.
In the first case, individuals are not completely free to choose because of mutual agreement
with e.g. a given employer or landlord, and their ties rely on a joined decision process between
multiple parties, such as employee and employer. Travel utility might not be maximized, and
individuals’ choices potentially bias from their favorite destinations in case of access restrictions.
Contrarily, and in the case of shopping and leisure, individuals are free to choose in most
cases between shop alternatives, or visiting friends, though, in some cases with restrictions to
capacity or accessibility, e.g. at restaurants, theatre, or club memberships. Because of this almost
completely free choice, theory for secondary destination choice can potentially diverge from
ideas of primary destination choice (e.g. Ben-Akiva, 1973; McFadden, 1974; Ben-Akiva and
Bierlaire, 1999). Primary destination choice such as workplace choice therefore might resembles
residential destination choice as applied in land use models.

Moving towards market-related methodologies, Hackney et al. (2013) and Hurtubia et al.
(2010) summarized land market models and their implementation in land use models and
were focusing ’bid’ or ’auction’ models, and hedonic pricing models. ’Bit’ models mirror
individuals maximizing their surplus, and adjust prices at destinations. Hedonic price models
are often couples with utility-based choice models, and iterative procedures avoid over- and
undercrowdedness (e.g. Zhou andKockelman, 2011). Mentionedmodels are able tomirrormarket
dynamics for large-scale models; it remains unclear if they are also applicable for transportation
modeling since auction behavior possibly diverge from transport-related behavior.
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1.6 Capacity constraints and shadow prices

Shadow prices serve as an impedance for attractive alternatives with limited capacity. Shadow
prices reflect alternatives’ constraints as explained in the following example based on micro-
economics and productivity optimization. In an inefficient market situation, demand possibly
exceeds supply due to distributional effects; then, shadow price implementation allows a solution
of the optimization problem (Albouy, 2004). In economics, shadow prices are used to estimate
unknown costs of a certain good or alternative. A price p > 0 can be assumed as well as a stock
of X with sold units x where 0 ≤ x ≤ X , and the objective max(px). Customers buying units
x optimize their utility u, with respect to their time and budget limits, resulting in at least two
dependent optimization problems. Any resource is considered a constraint (e.g. time, units), if
the number that customers would like to use exceeds availability.

In linear programming, shadow price is associated with a constraint, and defines how much
the optimal value of the objective would increase per unit increase in the amount of resources
available, or how much individuals are willing to pay. They are in most cases equal to the
solution of the dual variables of a given constrained linear program (Wagner, 1975). This idea
of shadow prices is transferred and adjusted for destination choice in the following.

In destination choice, shadow prices can be assigned to designated destinations and regarded as
additional impedance for persons choosing these destinations. Shadow prices can thus account
for these alternatives’ capacity constraints and scarcity, which can neither be captured with
model parameters, nor with error terms (ε) of choice model distributions. Vitins et al. (2016)
successfully applied a destination choice model on entire Singapore city-state, and described a
destination choice model in detail, especially also in combination with generalized utility and
log(alternative capacity) (Lerman, 1977). Vitins et al. (2016) showed that destination choice
coupled with shadow prices improves model quality considerably. Proposed methodology was
successfully applied in an agent-based model of Singapore with 1’087 alternative destinations.

For more transportation application, literature provides information on shadow prices and some
effects in behavioral choice models. However, detailed methodology and references are missing
for destination choice models. Spiess (1996) applied shadow prices on parking choice. Gupta
et al. (2014) used shadow prices for park-and-ride lots to identify the best parking lot, as did
Davidson et al. (2011). Hammadou and Papaix (2014) applied shadow prices in a mode choice
model for CO2 pricing. de Palma et al. (2007) modeled housing markets, and defined that supply
and prices in the housing market might clear demand, depending on the specific situation. They
presented algorithms for constant and variable demand in the housing market context.
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Literature has also focused on joint travel and residential costs based on mathematical programs.
Beckmann and Wallace (1969) introduced shadow prices, similar to the proposed approach, for
welfare maximization of home location changes with infrastructure changes, including housing
rents. Los (1979) modified utility function, transportation and residential costs to improve
residential choice and the usage and impact of transportation; travel behavior and residentatial
location are coupled in mathematical programs.

1.7 Technical aspects in destination choice modeling

1.7.1 Spatial correlation

Spatial correlation between alternatives is problematic in choice model estimation due to
unobserved spatial and demographic attributes. Bhat and Guo (2004) formulated a model
for residential choice brought together random taste variation and correlation among choice
alternatives, both key in choice modeling. They showed a dominant effect of travel times in
their empirical test case, as well as significant spatial correlation among contiguous destinations,
and differential responsiveness of households to exogenous variables. Sener et al. (2011)
accommodates spatial correlation among any types of spatially distributed destinations (e.g.
not restricted to contiguous destinations) including a case study in the San Francisco bay
area. Spatial correlation can be tackled with considerable computational resources. It remains
unclear how spatial correlation methods approach large-scale applications and agent-based model
implementations.

1.7.2 Sampling techniques and calculation costs

McFadden (1978) provided techniques for sampling alternatives from the full set of alternatives
due to infeasible data requirements; they were applied for residential location choice, and with
aggregation of alternatives and similarities of alternatives. Lee and Waddell (2010) presented
a nested logit model for residential choice with sampling techniques including a correction
procedure for sampling bias. Thill (1992), Kwan and Hong (1998) and others describe choice
set formations for geographic areas. They consider behavioral realism such as space-time
prisms and trip chaining, information acquisition for alternatives, and other constraint oriented
approaches. Besides that, they describe data requirements, computational advances and spatial
(GIS) calculations, or stochastic processes. Lee and Waddell (2010) modeled residential
location choice in a nested logit (NL) two-tier approach, where the upper tier decides the binary
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decision of moving at all. They introduced sampling techniques for very large alternative sets,
and a correction procedure for the NL model. Ben-Akiva and Bowman (1998) introduced a
residential choice model, embedded in a activity based model similar to Bowman and Ben-Akiva
(2001). Beside other variables, their model includes individual activity patterns, conditioned
to accessibility. Frejinger et al. (2009) and Nerella and Bhat (2004) and proposed sampling
methods and found that a large number of observations are needed to achieve reasonable model
parameter values. Nerella and Bhat (2004) suggested drawing 1⁄8 of the full choice set size as a
minimum and 1⁄4 as a desirable sample share - in the case of their MNL models, and non-MNL
models are even more demanding about required sample size.

High calculation costs are still ubiquitous in model estimation and application. Many applications
in literature run on smaller census data set or smaller geographic regions. However, when
it comes to application, computer resources scale quadratic or more, and available computer
resources might be insufficient, or parallelization and online computer resources are still limited,
resulting in e.g. infeasibly long simulation and convergence time. Then, most complex and
‘accurate’ model might be impractical in real-world applications, and consequently, model
definition potentially trades off against precision. In destination choice, alternative sets can be
considerably large, and depending on model definition, models are estimated either on sampled
data only, or full and complete data sets.

1.8 Research question

Gap on complementary data usage such as cross-section flows:

Section 1.6 discusses shadow prices as a promising method for capacity constraint consideration.
A generalization of mentioned shadow prices at destination also allows to potentially constrain
origins. At cross-sections, flow counts from one section to another would be exogenous and
presumed as known input constraint. Generally, any origin-destination relation and defined
subset of all trips can be potentially assumed as (empirically) known exogenous input constraint.
These situations are relevant especially when flows of given origin-destinations systematically
deviate from expected, empirical cross-section flows. In case of deviating flows, individual’s
behavior is therefore not fully accounted in the underlying choice model, and considering such
cross-section data is relevant for improvements on destination choice models.

Potential applications are manifold for subdivided origin-destination section and corridors (cross-
sections). Such sections can be defined e.g. on geographical, or political reasons. Examples
of geographically defined sections are mountain ranges separating two regions, or rivers and
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other water bodies. Examples of politically motivated sections are country borders. In both
cases, counts can be available on specific cross-sections, e.g. on mountain passes, or customs.
In transport models, specific geographically or politically defined sections can be mirrored
within model perimeter, and modeled flows can be compared on cross-sections with empirical
cross-section values. Knowing about a methodology to account for this additional data source
potentially increases choice model quality.

Derived research questions:

Two research questions are derived from above discussion:

1. Given travel census data availability, can we increase model quality by adding com-
plementary data and constraints such as destination capacity (Section 1.6) or empirical
cross-section flows?

2. Is it possible to utilize estimated destination choice parameters in large-scale applications
with ten thousands of potential destinations within reasonable calculation times (Section
1.7)?

While focusing on an encompassing choice model in Vitins et al. (2016), this paper focuses on
generalized theory for spatial constraints in destination choice, and applicability in a large-scale
case study (tri-national agglomeration of Basel) with 2 · 104 potential destinations, political
borders and different language areas.

2 Data Sources for Basel Case Study Application

2.1 Spatial Data

The spatial extent of the model covers an area of about 5,460 km2 (85 km long and 91 km wide)
with 1.96 million inhabitants as of 2015. Basel as a main city lies in the corner of the three
nations Switzerland, Germany, France; therefore the region is often referred as the trinational
region as the Basel metropolitan area extends across all three countries.

Population distribution is displayed in Figure 7(a) exemplary for Basel city, and workplace
distribution in Figure 7(b) (placed in the Result section for later outcome comparison). Data is

11



Destination choice modeling with spatially distributed constraints May 2019

collected from BfS (2017) for Switzerland and complemented for Germany and France based on
Bau- und Verkehrsdepartement Basel-Stadt (2015); BfS (2017). Population and workplaces are
collected for 20,645 zones as indicated in Figure 2(a). In an inner core area around Basel, zones
a generated based on inhabited hectar raster cells (with side length of 100m). The side lenght of
the zones in the outer core area amounts to 200m, while the remaining area is covered by zones
that represent the municipal borders.

2.2 Survey data

2.2.1 Cross-border flows

Data on cross-border flows are derived from a cordon line survey which was conducted in 2010,
available through Bau- und Verkehrsdepartement Basel-Stadt (2015) for this paper. They are
available as average weekday counts for specific trip purposes, and visualized in Figure 2(b) for
commuters. Values include home-workplace trips, excluding return tips. Flow differences are
considerable and are accounted for in the proposed choice model approach. To fit an agent-based
destination choice model in such conditions was the main motiviation to develop the model
presented in this paper. Cross-border flows are only available for a reduced region compared
to the entire model perimeter, indicated in Figure 2(a) with small rasters. Identical behavior is
assumed for remaining flows (also in line with proposed method below).

2.2.2 Micro census 2015

To compare travel distance distributions derived from the model with data from observed
behaviour, we employ the Swiss Mobility and Transport Microcensus (MTMC) (Swiss Federal
Statistical Office (BFS), 2017) which was conducted in 2015 by the Federal Office for Statistics
of Switzerland (further referred to as "MZMV 2015"). Data of 57,090 interviewed persons
and their households were collected in 2015, providing a substantial sample of the population
and travel behavior. Selected households were drawn systematically within the country of
Switzerland, with higher densities in larger cities and agglomeration regions. MZMV 2015 is
used for outcome comparison and reference distributions; in this paper, only data points within
perimeter area are selected from census data.
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Figure 2: Model overview and considered commuters cross-section flows.
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2.2.3 Commuter flows 2014

Results of the proposed shadow price methodology are compared against a commuter flow
evaluation conducted originally for entire Switzerland for 2014 (BfS, 2017). For this study, data
is cut at perimeter borders, and is further referred to as "Pendlermatrix". Commuting flows and
distances of "Pendlermatrix" are compared with flows and distances calculated by the proposed
methodology.

2.3 Existing destination choice model of Basel region

Logsum parameter values are used in the following from the existing destination choice model
of the identical region of Basel (Bau- und Verkehrsdepartement Basel-Stadt, 2015). The existing
destination choice model is based on a logsum utility calculation for each potential destination,
including car, public transport (pt), bicycle and pedestrian mode. Mode utilities are estimated
with specific parameters and corresponding variables. For car, travel times, distance, estimated
park search time, gas costs, parking and car costs are considered in the model. For pt, in-vehicle
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time, access time, ticket costs, vehicle interchange, service frequency, season card availability
card were used. Travel time is used for bicycle and pedestrian trips, calculated with average
travel speeds. Model parameters are estimated for individual trip purposes, namely commuting,
educational, shopping, leisure and service trips. Separate models are implemented for each trip
purpose, with separate parameter values.

In the existing destination choice model (Bau- und Verkehrsdepartement Basel-Stadt, 2015),
destination choice calculation is based on a logsum term as described above and a gravitation
approach with gravitation parameter optimization. For this paper, logsum model parameters
are identical with the existing model. Compared to the existing model, this paper uses an MNL
based destination assignment approach with logsum calculation, above described variables and
identical parameter values, and adaption on the global logsum parameter values due to missing
gravitational parameter (2).

Methodological similarities between the two approaches, MNL and gravity, are described in
Anas (1983) in detail with all formulae transformation (see also Section 1.3 and 1.4). This
paper excludes further model re-estimation and focuses on spatially distributed contraints. Still,
proposed methodology of this paper also allows replacement of given utility formula and to
substitute it with a more comprehensive generalized utility approach. (If budget would allow,
generalized utility estimation is recommended as examined in Vitins et al. (2016)).

3 Methodology

Proposedmethodology focuses on destination choice embedded in transport models, and therefore
refers to agents travelling to destinations for activity performance. Two generic constraints are
added in the following, namely for destinations and cross-section flows. Destinations potentially
have certain capacity constraints; e.g. at workplaces, we assume that workplace numbers are
met either exactly, or serve as upper limit. Destination constraints are relevant in destination
choice models, because capacity is potentially exceeded when applying a choice model on
each agent without knowing decisions of other agents. Technically, workplace constraints are
defined as one-dimensional constraint (array), whereas each array value refers to only one
specific destination. Another dimension is added for cross-section flows. In the two-dimensional
case, we refer to exogenous information on cross-sections, such as counts, between defined
geographic regions. Counts can be available between two regions separated by a mountain range
or political border, where we potentially know the flow counts. In the two-dimensional approach,
cross-section counts serve as constraint when assigning destinations. One- or two-dimensional
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Figure 3: One-dimensional destination constraint (orange) i and two-dimensional cross-section
constraint M1–M2 (green).
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constraints are therefore independent of each other, and can be considered alone or jointly in
destination choice calculations. Figure 3 visualizes both categories of spatially distributed
constraints; x and y axes are destinations and origins, such as workplaces and home locations.

Proposed methodology offers diverse application potential for the one- and / or two-dimensional
constraints as showed in Figure 3, such as cross-section flow estimation, capacity constraint
alternatives (e.g. vehicle size in route choice, destination capacity on destination choice) on
various scales. The methodology described in the following is a generalization of the one-
dimensional case described in Vitins et al. (2016), and additionally includes the two-dimensional
case.

3.0.1 Methodological prerequisites

Two relevant requirements are discussed for the constrained destination choice. (1) Proposed
methodology should be applicable to scenario and forecast applications. Therefore, constraints
need to be adaptive e.g. in the case of future population growth. (2) Incomplete data might still
be considered in proposed methodology, especially at available flow counts which cover only
part of the model area. Following list describes requirements for spatial constraints:

15



Destination choice modeling with spatially distributed constraints May 2019

1. One-dimensional case:

a) Capacity constraints at single destinations.

b) Capacity constraints at a defined subset of specified destinations.

2. Two-dimensional case:

a) Cross-section constraint between defined geographic regions.

b) Cross-section constraint between subset of defined geographic regions.

3. Different approximation options:

a) Ceiling option for a given upper limit (e.g. capacity constraints at workplaces).

b) Bottom option for a given lower limit (e.g. known lower bound at workplaces).

c) Exact approximation for a given value (e.g. preciseworkplace number or cross-section
flow counts).

4. Scenario and forecast capabilities with two alternative options:

a) Identical parameter weights for scenario and forecast as in calibrated scenario (see
below explanation).

b) Newly estimated parameter weights with new constraints.

As another requirement, proposed methodology should be applied in the following environ-
ments:

1. Applicable in a reasonable geographic size for a transport model (reference case-study
includes 2 Mio. inhabitants).

2. Calculation time and computational memory requirements needs to be reasonable for this
size (case-study includes 20,645 destination as potential alternatives).
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3. Algorithm can be applied in both agent-based applications, and macroscopic flow models
(case-study has both options).

Spatial correlation describes potential correlation between specific workplace with neighboring
workplaces. In this paper, it is assumed that spatial correlation is less relevant and therefore
excluded based on the following reasons:

1. Today, job search (workplace assignment) often takes place on internet search machines
and might exclude spatial correlation since the internet search is not affected by spatial
distances.

2. Job search based on individual contacts might be affected by spatial correlation, because
of the distribution of individual contacts in space. However, number of individual contacts
decrease with distance (Kowald et al., 2013), and therefore in relevance.

3. Industry sector consideration can further improve choice models. This behavior is covered
with the industry – profession type match described in generalized utility, and potentially
reduce correlation effects.

3.1 Shadow price calculations for destination choice models

Following methodology aims at refining existing model approaches for destination choice in
transport models. Proposed methodology starts at the same premises as MNL choice models
(Section 1.3). Moreover, certain modification are added in model theory, described below:

1. Shadow prices are defined and calculated as dis-utility added to destinations due to capacity
restrictions. So, shadow prices are positive, and are negatively perceived by choice makers.

2. It is assumed impossible to assign more workers at designated workplaces than indicated
in the workplace survey data. On the other side, it might be possible to have certain vacant
workplaces. Therefore, an assignment balance is assumed with a certain upper restriction
determined by the maximum number of workplaces, which should not be violated.

3. Cross-section flows are exogenous values; it is assumed that they match exactly with the
modeled flows.

4. Constraint sums need to always allow a feasible solution on destination assignments.
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5. Choice model parameters for utility calculations are given as input parameters, and
therefore estimated beforehand (Bierlaire, 2019).

Starting with utility-maximizing theory (1a), probability pi,j and flow gi,j of choosing alternative
destination j are defined as:

gi,j = Pi · pi,j = Pi ·
eui, j∑
j eui, j

(3)

whereas ui,j equals deterministic utility of alternative j. Pi is the number of individuals
commuting from origin i (a building or a zone). Individual attributes and situational attributes
are omitted in (3), by omitting corresponding indices. However, individual and situational
attributes can be easily re-added for completeness.

It can be shown that the following convex minimization problem (4a) is equivalent to (3),
by applying the Kuhn-Tucker conditions, feasible because considered function is partially
differentiable (Horst, 1979):

Min
∑
i,j

gi,j
(
ln(gi,j) − 1 + ui,j

)
(4a)

subject to:∑
j

gi,j = Pi (4b)

Capacity restrictions of destination zones j (4c) are added as addition constraints to the
optimization problem above

(
(4a),(4b)

)
. Moreover, two-dimensional matrix restrictions are also

added (4d) where we define all geographic subregions for origin – destination cross-section
flows with M = {M1,M2, ...Mm} where {i, j} ∈ Mm for both origin and destination subregions
(see Figure 3 for a schema visualization). Known cross-section flow values are defined in
B = {BM1,M1,BM1,M2, ...} and added as additional constraints in (4d). In-/equality of these
constraints depends on available data and are due to known upper limit, lower limit, or exact
approximation of a given cross-section flow.∑

i

gi,j ≤ Cj (4c)
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∑
i∈M1,j∈M2

gi,j = BM1,M2 (4d)

Total number of employees should not exceed total number of workplaces available (4e), or the
problem above becomes unfeasible. This requirement is assumed as given beforehand. However,
proposed methodology is also applicable if constraint (4e) is violated, but only with resulting
oversaturated destinations. Initialization of B-values can be incomplete, meaning that not all
possible cross-section flows of M are needed for proposed methodology. Still, defined set of
cross section flow constraints should be compatible and inclusive (e.g. for M1 see (4f)).∑

k

Ck ≥
∑

k

Pk (4e)

∑
m

BM1,Mm ≤
∑
i∈M1

Pi (4f)

In practical model applications, inequation of capacity constraints as in (4e) means that the
sum of workers is lower or equal to the sum of workplaces available. Here, two aspects
complicate practical applications: First, workers traveling from outside the model perimeter are
not considered in the model, and their workplaces should be subtracted. This is actually often
the case in any destination choice model. Second, part-time workers can be considered with
appropriate adaptions.

We introduce the Lagrange function defined as the following with vectors λ1, λ2, and matrix λ3

added as Lagrange multipliers, to reduce equality and inequality constraints. λ1 has length i, λ2

has length j, λ3 has length ≤ i × j. λ2 is constraint to ≥ 0 due to the inequality of (4c):

L(gi,j, λ1, λ2, λ3) =
∑
i,j

(
gi,j · ln(gi,j) − gi,j + ui,j · gi,j

)
+

λ1

(∑
j

gi,j − P

)
+ λ2

(∑
i

gi,j − C

)
+ λ3

( ∑
i∈M1,j∈M2

gi,j − B

)
(5)
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Now, optimality conditions of (5) are (λ2 ≥ 0):

gi,j = e−λ1,i−λ2, j−λ3,i∈M1 , j∈M2−ui, j for all i, j . (6)

and∑
j

e−λ1,i−λ2, j−λ3,i, j−ui, j = Pi for all i. (7a)

∑
i

e−λ1,i−λ2, j−λ3,i, j−ui, j ≤ Cj for all j . (7b)

∑
i∈M1,j∈M2

e−λ1,i−λ2, j−λ3,i, j−ui, j = BM1,M2 for all defined Mn,Mo pairs. (7c)

Unlike (4a) – (4c), dual problem (7a) – (7c) comes without constraints; λ1, λ2 and λ3 can be
determined by solving (7a) – (7c).

For efficiency, all variables in (7a) – (7c) are transformed: α = e−λ1 , β = e−λ2 , γ = e−λ3

Ui,j = e−ui, j , where α, β, γ,U > 0 and β < 1:

αi ·
∑

j

β jγi,jUi,j = Pi (8a)

β j ·
∑

i

αiγi,jUi,j ≤ Cj (8b)

γi,j ·
∑

i∈M1,j∈M2

αiβ jUi,j = BM1,M2 (8c)
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3.2 Efficient algorithm to determine shadow prices on one and two
dimensional constraints

Given above formulae, following set of unknown parameter values are given: utility u, λ2 and λ3,
whereas utility decomposes into its β parameters. The problem is a non-linear equation system
with linear equality and inequality constraints and parameters needed to be fitted with empirical
data. Normally, utility function fitting is based on a maximum likelihood method. Assuming a
generalized logit model, it can be estimated with known methods (McFadden, 1974; Ben-Akiva
and Lerman, 1985). Ignoring constraints, the maximum likelihood method can be applied with
a various algorithms for unconstraint nonlinear optimization since it is strictly concave; and
algorithm mainly differ in convergence speed and memory.

After estimating utility, β and γ values need to be found in an iterative approach. Algorithm 1
describes an iterative procedure to determine shadow prices. Threshold t defines how much
capacity should not be exceeded by a given destination. E.g. t = −2 means that capacity
can be exceeded by maximum 2. Algorithm 1 approximates a balanced situation within an
adequate number of iterations, where all commuters are assigned to a workplace and where
defined cross-section flows are approximated to empirical values. Shadow prices λ2, λ3 can be
viewed as additional utilities for each individual, to respect capacity constraints and cross-section
flows. λ2 reflect spatial development potential of underdeveloped, or even missing, but valuable
alternatives. λ3 is a shadow prices on a specific relation between M1 and M2. Overall, it might
be possible that similar results could be obtained by randomly assigning weights to locations
compared to results achieved with Algorithm 1; however, Algorithm 1 efficiently approximates
a balanced situation, where all the commuters find a designated working location under given
cross-section constraints.

Proposed Algorithm 1 is based on a gradient projection methodology, similar to Haftka and
Gürdar (1992, Chap. 5). It starts with a solution where β and cross-section shadow prices are
set to 1 (both shadow prices are then 0). Generally, the algorithm assumes that active constraints
at point gn in the nth iteration are also active at gn+1. Subsequently, vectors β and cross-section
shadow prices are redefined after intermediate results gn when necessary. Equality condition of
the cross-section impedance (4d) leads to a continuous recalculation of the cross-section shadow
prices in each iteration n when values are over- and underestimated compared to the given
constraints. In case of the destination capacities, β are only recalculated when the inequality
is violated and destinations are oversaturated in iteration n. Similar optimization methods are
applied widely and successfully in other fields.

21



Destination choice modeling with spatially distributed constraints May 2019

Algorithm 1 Shadow price calculation for one and two dimensional constraints.
n← 0
βn ← 1
γn ← 1
while C −

∑
i gi < t do

1. Calculate the demand gi,j,n for each pair i, j based on (6) and (8a):

gi,j,n ←
Pi · βn · γn ·Ui,j∑

j βnγnUi,j
(9)

2a. One dimensional case: Recalculate β parameters based on (6) and (8b):

βn+1,j ← min
(

Cj · βn∑
i gi,j,n

,1
)

(10)

2b. Two dimensional case: Recalculate γ parameters based on (6) and (8c):

γn+1,i,j ←
BM1,M2 · γn∑
i∈M1,j∈M2 gi,j,n

(11)

2c. One and two dimensional case: Recalculate β and γ parameters based on (6),(8b) and
(8c):
3. n← n + 1

end while
Shadow prices for destination alternatives: λ2 ← -log(β)
Shadow prices for cross section flows: λ3 ← -log(γ)
Terminate.

3.3 Data quality issues

Data quality and approximation of spatial data is often an issues for larger models. It might be
that certain workplace numbers are incomplete for given areas and need to be approximated,
or the number of part-time workers are not precisely known. This can lead to unequal sums
between global destination capacity and agents assigned to a trip. Proposed algorithm handles
these issues, and still approximates destination choice. If capacity is scarce, destinations are
overfilled where it uses least utility. If capacity is more than enough destinations are filled up

22



Destination choice modeling with spatially distributed constraints May 2019

where individual utility can be minimized. However, proposed methodology differs in origin
and destination balancing as common matrix fitting approaches(e.g. Deming and Stephan, 1940).
Algorithm 1 only fits destination assignment, and trip number remains as initially defined.

4 Results

This section contains three parts: First, Section 4.1 shows Algorithm 1 convergence related to
capacities at destinations, and cross-section flows. Second, Section 4.2 discusses spatial shadow
price distribution as a result of Algorithm 1. Third, Section 4.3 demonstrates further Algorithm
1 applications.

4.1 Algorithm 1 convergence characteristics

4.1.1 Global convergence

Algorithm 1 convergence is essential for destination saturation evaluation. This secion discusses
global convergence behavior, for two reasons. First, convergence is expected when applying
Algorithm 1 as shown in above theory, and therefore results should conform accordingly. Second,
convergence behavior is essential for determination of the number of iterations conducted with
Algorithm 1, for final cut-off criteria definition.

Figure 4(a) shows median and mean of all destination workplace difference relative to available
workplaces at destinations, for each iteration n = 0...14. Figure 4(a) depicts that over- and
undersaturation slowly decrease towards a global workplace saturation at growing iteration
number, which is the main purpose of Algorithm 1. Second, cross-section flows also converge
towards a minimum. Figure 4(a) also shows cross-section mean values (median is ignored
because of the low numbers of 6 examined cross section flows).

Figure 4(b) refers to the specific cross section flows between the countries and therefore contains
more detail than global mean value evaluation in Figure 4(a). It shows larger differences between
calculated cross-section flows and counts. More specifically, Figure 4(b) depicts unbalanced
flows between both directions of each cross-section considered in the model. In the Basel case
study, this is due to more directional flows of commuters in one direction. Figure 4(b) depicts
under-estimation of flows in one direction, and over-estimation of flows in the other direction; this
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holds for the cross-section Switzerland - Germany and Switzerland - France trough all iterations,
and France - Germany at some iterations. This is in line with directional flows observed in the
counts.

Definition of cut-off criteria for Algorithm 1 is subject to interpretation. Major convergence
takes place before iteration 10 (Figure 4(a)), however, small assignment changes are calculated
after iteration 10 especially at specific cross-section flows (Figure 4(b)). It is assumed that
convergence behavior also varies between case studies, and therefore needs to be an evaluation
element of any application.

Algorithm 1 takes about 2.5 hours to calculate 15 iterations on a 2.6 GHz Intel Core i7 processor
with 15.8 GB memory, with considerably optimized code structure. Iteration 0 uses about 1.5
hours of total calculation time due to encompassing utility calculation.

4.1.2 Workplace saturation

Figures 5(a) and 5(b) depict workplace saturation at iteration 0 and 15, respectively. Over- and
under-saturated workplaces can be found in iteration 0, Figure 5(a), whereas workplaces are
almost completely saturated in iteration 15 (Figures 5(b)). Especially oversaturation is minimized
as a result of penalties to overcrowded destinations (ceiling condition in (4c)).

4.1.3 Trip length distribution

Figure 6 shows cumulative distance distribution of all modeled commuting trips, and potential
distributional changes due to Algorithm 1 application. A priori, it is unclear howmuch Algorithm
1 affects trip length distribution. For comparison, Figure 6 includes two reference distance
distributions. First reference distance distribution includes trips from the national micro census,
selected for the Swiss perimeter area; second reference distance distribution represents the
selected and encompassing commuting trip distribution (see Section 2.2.3 for data source
description). Figure 6(a) shows the distance distribution of all commuters before applying
Algorithm 1. Due to reference data availability, only commuting trips are displayed starting
and ending in the Swiss perimeter area. At this stage, destination alternatives are potentially
overcrowded, and cross-section flows potentially differ from observed counts. Figure 6(b)
shows cumulative distance distribution after applying Algorithm 1 for 15 iterations, including
cross-section flow balancing, and shadow prices calculations at destinations. Figures 6(a) and
6(b) both show that before and after applying Algorithm 1, overall population travel distributions
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Figure 4: Algorithm 1 convergence behavior.

(a) Destination constraints and cross-section flow constraint optimization.
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(b) Convergence behavior of Algorithm 1 for cross-section flows, compared to counts.
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Figure 5: Regression with workplace capacities and workplace saturation.

(a) Saturation after choice model application
(iteration 0).
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(b) Number of workplaces and saturation (itera-
tion 15).
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mirrors the reference data provided from alternative sources. Distance distribution only slightly
increase after applying Algorithm 1 especially between 5km and 20km travel distance, because
of reassigning agents to different locations. However, effects on travel distance distribution are
minor, and overall fit most likely satisfies modeling needs.

4.2 Shadow price distribution and interpretation

This section describes spatial shadow price distribution, in comparison with population and
workplace distribution. Insights improve model understanding, but also future land use
development and planning. Figure 7(a) show spatial distribution of the Basel population,
Figure7(b) workplaces and 7(c) shadow price (λ2 = -log(β)) distribution. Shadow price
distribution in Figure 7(c) depicts a centralistic pattern. Prices are higher at outskirts and
generally lower in the city center. This distribution derives from a high concentration of jobs
centralized near the city center, and a comparably higher population density in the outskirts.
Accessibility might be a main reason for Basel’s centralized development, and land development.
While firms compete for very accessible locations, land prices rise and population are spread
towards agglomeration with lower living costs, however, also lower workplace densities. For city
planning, it is therefore key to know about workplace assignment.
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Figure 6: Cumulative car distance distribution for commuters of the entire synthetic population
of the Swiss perimeter area, in comparison with reference distributions (Section 2.2).

(a) at iteration 0, beforeAlgorithm1 application.
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(b) at iteration 15, after shadow price calcula-
tions for both cross-section and destination
shadow prices.
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4.3 Applications, forecast and scenarios

Multiple applications are evaluated for this section. First, Algorithm 1 is applied independently
for capacity constraint and cross-section flow optimization. Second, infrastructure scenario and
third, forecast capabilities are described in the following.

4.3.1 Independent capacity constraint and cross-section flow optimization

Algorithm 1 is modifiable for optimization of only (a) cross-section flow, and (b) destination
capacity constraints.

(a) Cross-section counts are approximated in Algorithm 1, and capacity constraints at
destinations are excluded during calculations. Step 2a and (10) are ignored in Algorithm
1. Figure 8(a) shows cross-section flow optimization; as expected, capacity constraints are
violated after Algorithm 1 calculations.

(b) Only capacity constraints at destination alternatives are considered in Algorithm 1, and
cross-section counts are unnecessary and excluded during calculations. Step 2b and
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Figure 7: Basel population, workplace and shadow prices distributions.

(a) Population distribution.
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(b) Workplace distribution.
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(c) Shadow prices λ2 distribution after iteration 15.
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(11) are ignored in Algorithm 1. Figure 8(b) shows capacity constraint optimization; as
expected, cross-section counts are not approximated after Algorithm 1 calculations. This
case is similar to calculation in Vitins et al. (2016).

4.3.2 Forecast capabilities

Growth in population and number of workplaces is considered in forecast scenarios. For
destination choice, alternative destinations or destinations with changing capacities affect
individual destination choice behavior. Often and for transport models, detailed population and
workplace growth is calculated for forecast scenarios, and destination choice is recalculated;
this procedure can be applied similarly with adapted alternatives’ capacities and Algorithm 1.
Differently, cross-section counts are missing for forecast. For this reason, two solutions (c) and
(d) are proposed for improved forecast and destination choice calculation.

(c) Calculated and optimized γ values for available cross-sections are reapplied for forecast
destination choice calculation. In this solution, cross-section impedance values γ remains
as in original, present destination choice calculation. Most probably, cross-section flows
deviate from empirical flows due to implemented growth conditions in forecast population
and workplaces. Figure 8(c) depicts average deviation of workplace capacities and cross-
section flows, of a forecast scenario with global 20% population and workplace growth.
Figure 8(c) shows deviation fore cross-section flows as supposed above, however, capacity
constraints are met similar to above evaluations. (Content of Figure 8 is comparable to
Figure 4(a).)

(d) Cross-section counts are assumed to be known, which means that values either remain or
grow accordingly (e.g. by 20%). Figure 8(d) shows convergence behavior with remaining
cross-section counts as in original data. As expected, Algorithm 1 optimizes destination
choice behavior and matches choice behavior with counts.

4.3.3 Scenario application

Figure 9 shows shadow price changes between two scenarios differing in a planned infrastruc-
ture, namely a fictitious city link connecting two city neighborhoods. Figure 9 depicts city
neighborhood clusters changing in their β values depending on the affect of the link. It shows a
systematic change in values. (Here, any further case-study interpretation is skipped because of
possibly unfeasible assumption on underlying data.)

29



Destination choice modeling with spatially distributed constraints May 2019

Figure 8: Global convergence behavior of Algorithm 1 over 15 iterations, differing in considered
spatial constraints.

(a) Only cross-section flow optimization.
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(b) Only destination capacity optimization.
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(c) Growth by 20% with fixed weights.
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(d) Growth by 20% with variable weights.
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Figure 9: Clustering of β changes when adding new infrastructure, here road link.
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Source: Assumptions differing from and uncomparable with any other planned study.
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5 Discussion and Outlook

Two generic types of spatial constraints are successfully integrated in a new and robust algorithm
to improve destination choice precision. Proposed methodology is applied in a detailed, large-
scale model with 2 · 104 destination alternatives. Results show that applied methodology
improves destination choice on a global, cross-section level and on a micro-level on choice
alternatives. On cross-sections, precision improvements are as high as 20% and more compared
to without Algorithm 1. Regarding choice alternatives and destination capacities, proposed
methodology is able to avoid over-saturations at popular locations. Both methodologies for
cross-section flows and destination capacities are applicable separately or simultaneously in
destination choice calculations. Moreover, proposed methodology allow forecast and scenario
calculation with necessary parameter choice (constant or variable impedance for cross-section
flows). And for land use planning purposes, shadow prices help predict future spatial development
potential of underdeveloped - or unused, valuable - destination alternatives.

Therefore, proposed methodology serves as robust solution for transport models and simulations,
still maintaining choice heterogeneity especially relevant for agent-based simulations. It therefore
can be efficiently implemented in large-scale agent-based models as in applied Basel case. In
transport simulations, improvements are probably even higher than 20% on single routes after
route assignment. According to our experiments and results, travel time distribution of all trips
slightly changes when applying proposed methodology, compared to empirical reference sample
distributions.

Still, additional research might be of interest, such as the following two topics: (1) Even though it
is not calculated in this paper, one can assume that statistical model fit improves during Algorithm
1 iterations as in Vitins et al. (2016), where ρ2 increases from ρ2 = 0.115 to ρ2 = 0.168 in
contrast to ignoring capacity constraints. It therefore seems that Algorithm 1 is capable of further
improving overall model prediction; this needs to be verified on cross-section flow calculations.
(2) Geographic border effects might still occur in model application, similar to ’border effects’
occurring in other transport models. Effects of persons from areas outside model perimeter
might affect all calculations; pertaining to areas easily accessible from outside of the model
perimeter. These external influences are difficult to capture quantitatively, e.g. at route choice or
departure time choice. Additional studies can reveal quantitative extents of these effects.

Referring to Anas (1983), it is clear that proposed methodology extents the utility maximization
approach, and further explores its broad application potential for large numbers of individuals
with various characteristics. Compared to the choice model applied in this paper, it is also
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possible to include additional data to estimate parameter values directly with a choice model
methodology. Improvements can account for different economic sections and job types (industry,
chemistry, etc.). Assignment should be in combination with a detailed destination choice model
including generalized utilities to consider economic sections, as proposed in Vitins et al. (2016).
Then, improvements account at least partially for specialization and economical benefits for
agglomerations (e.g. as in Venables, 2007).

Various other planning tasks are potentially solvable with applied methodology: Vehicle
occupancy will be additionally interesting for research and suitable for shadow prices, coupled
with mode and route choice, for dense cities with frequently overloaded public transport lines and
services. Battery charging stations for e-mobility or general parking choice might profit from the
proposed methodology, along with transportation modeling. Land use related, primary location
choice can be considered with proposed methodology for households and firm location. Spatial
economics (as mentioned above) can profit, and probably any constraint resource distribution, in
a wider sense.
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