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Abstract

Variational Bayes (VB) methods have emerged as a fast and computationally-efficient alternative
to Markov chain Monte Carlo (MCMC) methods for Bayesian estimation of mixed logit models.
In this paper, we derive a VB method for posterior inference in mixed multinomial logit
models with unobserved inter- and intra-individual heterogeneity. The proposed VB method is
benchmarked against MCMC in a simulation study. The results suggest that VB is substantially
faster than MCMC but also noticeably less accurate, because the mean-field assumption of VB is
too restrictive. Future research should thus focus on enhancing the expressiveness and flexibility
of the variational approximation.
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1 Introduction

The representation of taste heterogeneity is a principal concern of discrete choice analysis, as
information on the distribution of tastes is critical for demand forecasting, welfare analysis
and market segmentation. From the analyst’s perspective, taste variation is often random, as
differences in sensitivities cannot be related to observed or observable characteristics of the
decision-maker or features of the choice context.

Mixed random utility models such as mixed logit (McFadden and Train, 2000) provide a
powerful framework to account for unobserved taste heterogeneity in discrete choice models.
When longitudinal choice data are analysed with the help of random utility models, it is standard
practice to assume that tastes vary randomly across decision-makers but not across replications
for the same individual (Revelt and Train, 1998). The implicit assumption underlying this
treatment of unobserved heterogeneity is that tastes are unique and stable (Stigler and Becker,
1977). Contrasting views of preference formation postulate that preferences are constructed
in an ad-hoc manner at the moment of choice (Bettman et al., 1998) or learnt and discovered
through experience (Kivetz et al., 2008).

From the perspective of discrete choice analysis, these alternative views of preference formation
justify accounting for both inter- and intra- individual heterogeneity (also see Hess and Gier-
giczny, 2015). A straightforward way to accommodate unobserved inter- and intra-individual
heterogeneity in mixed random utility models is to augment a mixed logit model with a multi-
variate normal mixing distribution in a hierarchical fashion such that case-specific parameters
are generated as normal perturbations around the individual-specific parameters (Hess and Rose,

2009, Hess and Train, 2011).

Mixed logit models with unobserved inter- and intra-individual heterogeneity can be estimated
with the help of maximum simulated likelihood methods (Hess and Rose, 2009, Hess and
Train, 2011). However, this estimation strategy is computationally expensive, as it involves the
simulation of iterated integrals. Becker et al. (2018) propose a MCMC method, which builds on
the Allenby-Train procedure (Train, 2009) for mixed logit models with only inter-individual
heterogeneity. While MCMC methods constitute a powerful framework to perform posterior
inference in complex probabilistic models (e.g. Gelman et al., 2013), MCMC methods are
subject to several bottlenecks, which inhibit their scalability to large datasets, namely i) long
computation times, ii) high storage costs for the posterior draws, iii) difficulties in assessing
convergence.
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Variational Bayes methods (Blei et al., 2017, Jordan et al., 1999, Ormerod and Wand, 2010)
have emerged as a fast and computationally-efficient alternative to MCMC methods for posterior
inference in discrete choice models. VB addresses the shortcomings of MCMC by re-casting
Bayesian inference into an optimisation problem in lieu of a sampling problem. Several studies
derive and assess VB methods for mixed logit models with only inter-individual heterogeneity
(Bansal et al., 2019, Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017, Tan, 2017).
These studies establish that VB is substantially faster than MCMC at practically no compromises
in predictive accuracy.

Motivated by these recent advances in Bayesian estimation of discrete choice models, this
current paper has two objectives: First, we derive a VB method for posterior inference in mixed
logit models with unobserved inter- and intra-individual heterogeneity. Second, we benchmark
the VB method against MCMC in a simulation study.

We organise the remainder of this paper as follows. First, we give the formulation of a mixed
logit model with unobserved inter- and intra-individual heterogeneity. Then, we derive the VB
method for this model and benchmark the performance of this method against MCMC in a
simulation study. Finally, we conclude.

2 Model formulation

The mixed logit (MXL) model with unobserved inter- and intra-individual heterogeneity (Hess
and Rose, 2009, Hess and Train, 2011) is established as follows: On choice occasion t ∈

{1, . . .Tn}, a decision-maker n ∈ {1, . . .N} derives utility Unt j = V(Xnt j,βnt)+εnt j from alternative
j in the set Cnt. Here, V() denotes the representative utility, Xnt j is a row-vector of covariates,
βnt is a collection of taste parameters, and εnt j is a stochastic disturbance. The assumption
εnt j ∼ Gumbel(0, 1) leads to a multinomial logit (MNL) kernel such that the probability that
decision-maker n chooses alternative j ∈ Cnt on choice occasion t is

P(ynt = j|Xnt j,βnt, ) =
exp

{
V(Xnt j,βnt)

}∑
k∈Cnt

exp
{
V(Xntk,βnt)

} , (1)

where ynt ∈ Cnt captures the observed choice.

Note that the taste parameters βnt are specified as being observation-specific. To allow for de-
pendence between replications for the same individual and to accomodate inter-individual taste
heterogeneity, it has become standard practice to adopt Revelt’s and Train’s (1998) panel estima-
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tor for the mixed logit model. Under this specification, taste homogeneity across replications is
assumed such that βn,t = βn ∀ t = 1, . . . ,Tn. To accomodate intra-individual taste heterogeneity
in addition to inter-individual taste heterogeneity, the taste vector βn,t can be defined as a normal
perturbation around an individual-specific parameter µn, i.e. βn,t ∼ N(µn,ΣW) t = 1, . . . ,Tn,
where ΣB is a covariance matrix. The distribution of individual-specific parameters µ1:N is also
assumed to be multivariate normal, i.e. µn ∼ N(ζ,ΣB) for n = 1, . . . ,N, where ζ is a mean vector
and ΣB is a covariance matrix.

In a fully Bayesian setup, the parameters ζ, ΣB, ΣW are also considered to be random parameters
and are thus given priors. We use a normal prior for mean vector ζ. Following Tan (2017) and
Akinc and Vandebroek (2018), we employ Huang’s half-t prior (Huang and Wand, 2013) for the
covariance matrices ΣB and ΣW , as this prior specification exhibits superior noninformativity
properties compared to other prior specifications for covariance matrices (Huang and Wand,

2013, Akinc and Vandebroek, 2018). In particular, (Akinc and Vandebroek, 2018) show that
Huang’s half-t prior (Huang and Wand, 2013) outperforms the inverse Wishart prior, which is
often employed in fully Bayesian specifications of MMNL models (e.g. Train, 2009), in terms
of parameter recovery.

Stated succinctly, the generative process of mixed logit model with inter- and intra-individual
heterogeneity is as follows:

aB,k|AB,k ∼ Gamma

1
2
,

1
A2

B,k

 , k = 1, . . . ,K, (2)

aW,k|AW,k ∼ Gamma

1
2
,

1
A2

W,k

 , k = 1, . . . ,K, (3)

ΣB|νB, aB ∼ IW
(
νB + K − 1, 2νBdiag(aB)

)
, aB =

[
aB,1 . . . aB,K

]>
(4)

ΣW |νW , aW ∼ IW
(
νW + K − 1, 2νWdiag(aW)

)
, aW =

[
aW,1 . . . aW,K

]>
(5)

ζ |ξ0,Ξ0 ∼ N(ξ0,Ξ0) (6)

µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (7)

βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . ,Tn, (8)

ynt|βnt, Xnt ∼ MNL(βnt, Xnt), n = 1, . . . ,N, t = 1, . . . ,Tn, (9)

where {ξ0,Ξ0, νB, νW , AB,1:K , AW,1:K} are known hyper-parameters, and θ = {aB, aW ,ΣB,ΣW , ζ,µ1:N ,β1:N,1:Tn
}

is a collection of model parameters whose posterior distribution we wish to estimate.
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The generative process implies the following joint distribution of data and model parameters:

P(y1:N , θ) =

N∏
n=1

Tn∏
t=1

P(ynt|βnt, Xnt)P(βnt|µn,ΣW)
N∏

n=1

P(µn|ζ,ΣB) . . .

. . . P(ζ |ξ0,Ξ0)P(ΣB|ωB, BB)P(ΣW |ωW , BW)
K∏

k=1

P(aW,k|s, rW,k)P(aB,k|s, rB,k)

(10)

where ωB = νB + K − 1, BB = 2νBdiag(aB), ωW = νW + K − 1, BW = 2νWdiag(aW), s = 1
2 ,

rB,k = A−2
B,k and rW,k = A−2

W,k.1 By Bayes’ rule, the posterior distribution of interest is then given by

P(θ|y1:N) =
P(y1:N , θ)∫
P(y1:N , θ)dθ

∝ P(y1:N , θ). (11)

Exact inference of this posterior distribution is not possible, because the model evidence∫
P(y1:N , θ)dθ is not tractable. Becker et al. (2018) propose a Gibbs sampler for posterior

inference in the described model. While this method has been shown to perform reasonably
well, it is subject to the known limitations of MCMC. In the subsequent section, we derive a
VB method for scalable inference in mixed logit with unobserved inter- and intra-individual
heterogeneity. For completeness, the Gibbs sampler proposed by Becker et al. (2018) is given in
Appendix A.

3 Variational Bayes estimation

3.1 Background

Variational Bayesian inference (e.g. Blei et al., 2017, Jordan et al., 1999, Ormerod and Wand,

2010) differs from MCMC in that approximate Bayesian inference is viewed as an optimization
problem rather than a sampling problem. To describe the fundamental principles of mean-field
variational Bayes, we consider a generative model P(y, θ) consisting of observed data y and
unknown parameters θ. Our goal is to learn the posterior distribution of θ, i.e. P(θ|y). Variational
Bayesian inference aims at finding a variational distribution q(θ) over the unknown parameters

1To be clear, the following forms of the Gamma and inverse Wishart distributions are considered:

P(ak |s, rk) ∝ as−1
k exp(−rkak),

P(Ω|ω, B) ∝ |B|
ω
2 |Ω|−

ω+K+1
2 exp

(
−

1
2

tr
(
BΩ−1

))
,

whereby Ω and B are K × K positive-definite matrices.
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that is close to the exact posterior distribution. A computationally-convenient way to measure
the distance between two probability distributions is the Kullback-Leibler (KL) divergence
(Kullback and Leibler, 1951). The KL divergence between q(θ) and P(θ|y) is given by

KL (q(θ)||P(θ|y)) =

∫
ln

(
q(θ)

P(θ|y)

)
q(θ)dx = Eq {ln q(θ)} − Eq {ln P(θ|y)} . (12)

Consequently, the goal of variational inference is to solve

q∗(θ) = arg min
q
{KL (q(θ)||P(θ|y))} . (13)

Note that P(θ|y) =
P(y,θ)
P(y) . Hence,

KL (q(θ)||P(y, θ)) = KL (q(θ)||P(θ|y)) − ln P(y)

= Eq {ln q(θ)} − Eq {ln P(y, θ)}
(14)

The term Eq {ln P(y, θ)} − Eq {ln q(θ)} is referred to as the evidence lower bound (ELBO). Thus,
minimizing the KL divergence between the approximate variational distribution and the in-
tractable exact posterior distribution is equivalent to maximizing the ELBO. The goal of VB can
therefore be re-formulated as follows:

q∗(θ) = arg max
q
{ELBO(q)}

= arg max
q

{
Eq {ln P(y, θ)} − Eq {ln q(θ)}

}
.

(15)

The functional form of the variational distribution q(θ) remains to be chosen. We can appeal
to the mean-field family of distributions (e.g. Jordan et al., 1999), under which the variational
distribution factorizes as q(θ1:M) =

∏M
m=1 q(θm), where m ∈ {1, . . . ,M} indexes the model

parameters. The mean-field assumption breaks the dependence between the model parameters
by imposing mutual independence of the variational factors. It can be shown that the optimal
density of each variational factor is given by q∗(θM) ∝ expE−θm {ln P(y, θ)}, i.e. the optimal
density of each variational factor is proportional to the exponentiated expectation of the logarithm
of the joint distribution of y and θ, where the expectation is taken with respect to all parameters
other than θm (Ormerod and Wand, 2010, Blei et al., 2017). Provided that the model of interest
is conditionally conjugate, the optimal densities of all variational factors belong to recognizable
families of distributions (Blei et al., 2017). Due to the implicit nature of the expectation operator
E−θm , the ELBO can then be maximized using an iterative coordinate ascent algorithm (Bishop,

2006), in which the variational factors are updated one at a time conditional on the current
estimates of the other variational factors. Iterative updates with respect to each variational factor
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are performed by equating each of the variational factors to its respective optimal density, i.e.
we set q(θm) = q∗(θm) for m = 1, . . . ,M.

3.2 Variational Bayes for mixed logit with unobserved inter- and

intra-individual heterogeneity

In the present application, we are interested in approximating the posterior distribution of
the model parameters {aB, aW ,ΣB,ΣW , ζ,µ1:N ,β1:N,1:Tn

} (see expression 11) through a fitted
variational distribution. We posit a variational distribution from the mean-field family, i.e. the
variational distribution factorises as follows:

q(θ) =

K∏
k=1

q(aB,k)q(aW,k)q(ΣB)q(ΣW)q(ζ)
N∏

n=1

q(µn)
N∏

n=1

Tn∏
t=1

q(βn,t). (16)

Recall that the optimal densities of the variational factors are given by q∗(θi) ∝ expE−θi {ln P(y, θ)}.
We find that q∗(aB,k|cB, dB,k), q∗(aW,k|cW , dW,k), q∗(ΣB|wB,ΘB), q∗(ΣW |wW ,ΘW), q∗(ζ |µζ ,Σζ), and
q∗(µn|µµn

,Σµn
) are common probability distributions (see Appendix C). However, q∗(βnt) is

not a member of recognizable family of distributions, because the MNL kernel does not have
a general conjugate prior. For simplicity and computational convenience, we assume that
q(βnt) = Normal(µβnt

,Σβnt
) for all n ∈ {1, . . . ,N},t ∈ {1, . . . ,Tn} .

The ELBO is maximized using an iterative coordinate ascent algorithm. Iterative updates
of q(aB,k), q(aW,k), q(ΣB), q(ΣW), q(ζ), and q(µn) are performed by equating each variational
factor to its respective optimal distribution q∗(aB,k), q∗(aW,k), q∗(ΣB), q∗(ΣW), q∗(ζ), and q∗(µn),
respectively. Then, updates for the nonconjugate variational factor q(βnt) are performed with the
help of either quasi-Newton (QN) methods (e.g. Nocedal and Wright, 2006) or nonconjugate
variational message passing (NCVMP; Knowles and Minka, 2011). Whereas updates for
nonconjugate variational factors are obtained by maximizing the ELBO over the parameters of
the variational factor in QN methods, NCVMP translates this optimization problem into fixed
point updates:

Σβnt
= −

[
2 vec−1

{
Ovec(Σβnt )

(
Eq

(
ln(P(y1:N , θ))

))}]−1

µβnt
= µβnt

+ Σβnt

[
Oµβnt

(
Eq

(
ln(P(y1:N , θ))

))] (17)

These updates involve Eq
(
ln(P(y1:N , θ))

)
which does not have a closed-form expression due to

intractable expectation of the logsum of exponentials (E-LSE) term gnt = ln
[∑

k∈Cnt
exp(Xntkβnt)

]
.

After approximating, E-LSE using the delta method in Appendix B (Tan, 2017), we derive
the required gradients in Appendix C.5. Algorithm 1 succinctly summarises the proposed VB
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method for posterior inference in MXL models with unobserved inter- and intra-individual
heterogeneity.

Initialization:
Set hyper-parameters: ξ0, Ξ0, νB, νW , AB,1:K , AW,1:K;
Provide starting values: µζ , Σζ , µβ1:N,1:Tn

, Σβ1:N,1:Tn
, dB,1:K , dW,1:K ,µµ1:N

,Σµ1:N
;

Coordinate ascent:
cB = νB+K

2 ; cW = νW +K
2 ; wB = νB + N + K − 1; wW = νW +

∑N
n=1 Tn + K − 1;

ΘB = 2νBdiag
(

cB
dB

)
+ NΣζ +

∑N
n=1

(
Σµn

+ (µµn
− µζ)(µµn

− µζ)
>
)
;

ΘW = 2νWdiag
(

cW
dW

)
+

∑N
n=1 TnΣµn

+
∑N

n=1
∑Tn

t=1

(
Σβnt

+ (µβnt
− µµn

)(µβnt
− µµn

)>
)
;

while not converged do
Update µβnt

, Σβnt
for ∀n, ∀t using equation 17;

Σµn
=

(
wBΘ

−1
B + TnwWΘ

−1
W

)−1
∀n;

µµn
= Σµn

(
wBΘ

−1
B µζ + wWΘ

−1
W

∑Tn
t=1 µβnt

)
∀n;

Σζ =
(
Ξ−1

0 + NwBΘ
−1
B

)−1
;

µζ = Σζ
(
Ξ−1

0 ξ0 + wBΘ
−1
B

∑N
n=1 µµn

)
;

ΘB = 2νBdiag
(

cB
dB

)
+ NΣζ +

∑N
n=1

(
Σµn

+ (µµn
− µζ)(µµn

− µζ)
>
)
;

ΘW = 2νWdiag
(

cW
dW

)
+

∑N
n=1 TnΣµn

+
∑N

n=1
∑Tn

t=1

(
Σβnt

+ (µβnt
− µµn

)(µβnt
− µµn

)>
)
;

dB,k = 1
A2

B,k
+ wBνB

(
Θ−1

B

)
kk
∀k;

dW,k = 1
A2

W,k
+ wWνW

(
Θ−1

W

)
kk
∀k;

end
Algorithm 1: Pseudo-code representations of variational Bayes method for posterior inference
in MXL models with unobserved inter- and intra-individual heterogeneity

4 Simulation study

4.1 Data and experimental setup

For the simulation study, we devise a simple synthetic data generating process (DGP). Decision-
makers are assumed to be utility maximisers and to evaluate alternatives based on the utility
specification Unt j = Xnt jβn,t + εnt j. Here, n ∈ {1, . . . ,N} indexes decision-makers, t ∈ {1, . . . ,T }
indexes choice occasions, and j ∈ {1, . . . , 5} indexes alternatives. Xnt j is a row-vector of
attributes drawn from a standard uniform distribution. εnt j is a stochastic disturbance sampled
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from Gumbel(0, 1). The DGP of the observation-specific taste parameters βn,t is as follows:

µn|ζ,ΣB ∼ N(ζ,ΣB), n = 1, . . . ,N, (18)

βnt|µn,ΣW ∼ N(µn,ΣW), n = 1, . . . ,N, t = 1, . . . ,Tn. (19)

The assumed values of ζ, ΣB and ΣW are enumerated in Appendix D. The scale of the population-
level parameters is set such that the error rate is approximately 50%, i.e. in 50% of the cases
decision-makers deviate from the deterministically-best alternative due to the stochastic utility
component. We set N = 1, 000 and allow T to take a value in {20, 40}. For each combination of
N and T , we consider ten replications, whereby the data for each replication are generated based
on a different random seed.

4.2 Accuracy assessment

We evaluate the performance of the considered estimation approaches in terms of their predictive
accuracy, as is common in the context of Bayesian estimation of discrete choice models (see
Bansal et al., 2019, Braun and McAuliffe, 2010, Depraetere and Vandebroek, 2017, Tan, 2017).
Predictive accuracy accounts for the uncertainty in the estimates and allows for a succinct
summary of estimation accuracy, when the number of model parameters is large (Depraetere
and Vandebroek, 2017). In the present application, we consider two out-of-sample prediction
scenarios. In the first scenario, we predict choice probabilities for a new set of individuals, i.e.
we predict between individuals. In the second scenario, we predict choice probabilities for new
choice sets for individual who are already in the sample, i.e. we predict within individuals. For
each of these scenarios, we calculate the total variation distance (TVD; Braun and McAuliffe,

2010) between the true and the estimated predictive choice distributions. We proceed as
follows:

1. To evaluate the between-individual predictive accuracy, we compute TVD for a validation
sample, which we generate along with each training sample. Each validation sample
is based on the same DGP as its respective training sample, whereby the number of
decision-makers is set to 25 and the number of observations per decision-maker is set to
one. The true predictive choice distribution for a choice set Cnt with attributes X∗nt from
the validation sample is given by

Ptrue(y∗nt|X
∗
nt) =

∫ (∫
P(y∗nt = j|X∗nt,β) f (β|µ,ΣW)dβ

)
f (µ|ζ,ΣB)dµ (20)

8
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The corresponding estimated predictive choice distribution is

P̂(y∗nt|X
∗
nt, y) =

∫ ∫ ∫ (∫ (∫
P(y∗nt|X

∗
nt,β) f (β|µ,ΣW)dβ

)
f (µ,ΣB)dµ

)
P(ζ,ΣB,ΣW |y)dζdΣBdΣW

(21)

TVDB is given by

TVDB =
1
2

∑
j∈Cnt

∣∣∣Ptrue(y∗nt = j|X∗nt) − P̂(y∗nt = j|X∗nt, y)
∣∣∣ . (22)

For succinctness, we calculate averages across decision-makers and choice sets.
2. To evaluate the within-individual predictive accuracy, we compute TVD for another

validation sample, which we generate along with each training sample. For 25 individuals
from the training sample, we generate one additional choice set. Then, the true predictive
choice distribution for a choice set Cnt with attributes X∗nt from the validation sample is
given by

Ptrue(y
†
nt|X

†
nt) =

∫
P(y†nt = j|X†nt,β) f (β|µn,ΣW)dβ (23)

The corresponding estimated predictive choice distribution is

P̂(y†nt|X
†
nt, y) =

∫ ∫ (∫
P(y†nt|X

†
nt,β) f (β|µn,ΣW)dβ

)
P(µn,ΣW |y)dµndΣW (24)

TVDW is given by

TVDW =
1
2

∑
j∈Cnt

∣∣∣Ptrue(y
†
nt = j|X†nt) − P̂(y†nt = j|X†nt, y)

∣∣∣ . (25)

Again, we calculate averages across decision-makers and choice sets for succinctness.

4.3 Implementation details

We implement the MCMC and VB methods by writing our own Python code and make an effort
that the implementations of the different estimators are as similar as possible to allow for fair
comparisons of estimation times. For MCMC, the sampler is executed with two parallel Markov
chains and 200,000 iterations for each chain, whereby the initial 100,000 iterations of each chain
are discarded for burn-in. After burn-in, every tenth draws is retained to reduce the amount of
autocorrelation in the chains. For VB, we apply the same stopping criterion as Tan (2017): We

9



Variational Bayesian Inference for Mixed Logit Models with Unobserved Inter- and Intra-Individual HeterogeneityApril 2019

define ϑ =
[
α> ζ> diag(Θ)> d>

]>
and let ϑ(τ)

i denote the ith element of ϑ at iteration τ. We

terminate the iterative coordinate ascent algorithm, when δ(τ) = arg maxi
|ϑ(τ+1)

i −ϑ(τ)
i |

|ϑ(τ)
i |

< 0.005. As

δ(τ) can fluctuate, ϑ(τ) is substituted by its average over the last five iterations. The simulation
experiments are conducted on the Katana high performance computing cluster at the Faculty of
Science, UNSW Australia.

4.4 Results

Table 1 enumerates the results for the simulation study. We report the means and standard
errors of the considered performance metrics for ten replications under different combinations
of sample size N = 1, 000 and choice occasions per decision-maker T ∈ {20, 40}. In both
experimental conditions, VB is approximately twice as fast as MCMC but noticeably less
accurate. In the case of between-individual prediction, TVD is approximately ten times larger
for VB than for MCMC. A possible explanation for this discrepancy is the poor recovery of
the covariance (ΣB) of the individual-specific parameters, which is a consequence of the overly
simplistic mean-field assumption. The discrepancy in predictive accuracy between VB and
MCMC is less strongly pronounced for the case of within-individual prediction, which suggests
that the within-individual covariance matrix (ΣW) is recovered reasonably well by VB.

Estimation time TVDB [10%] TVDW [10%]

Mean Std. err. Mean Std. err. Mean Std. err.

N = 1000; T = 20
MCMC 3049.2 41.2 0.0198 0.0017 0.2028 0.0057
VB 1526.2 14.9 0.1977 0.0061 0.3203 0.0082

N = 1000; T = 40
MCMC 5649.5 93.5 0.0182 0.0020 0.1735 0.0047
VB 3199.2 25.7 0.1458 0.0028 0.2543 0.0076

Note: TVDB: total variation distance for between-individual prediction.
TVDW: total variation distance for within-individual prediction.

Table 1: Results of the simulation study
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5 Conclusion

Motivated by recent advances in scalable Bayesian inference for mixed logit models, this current
paper derives a mean-field variational Bayes method for the estimation of mixed logit models
with unobserved inter- and intra-individual heterogeneity. In a simulation study, we benchmark
the performance of the proposed method against MCMC and provide a proof-of-concept of the
feasibility of the proposed VB method. We show that VB is substantially faster than MCMC
but also find that VB is noticeably less accurate than MCMC. A possible explanation for this
discrepancy in predictive accuracy is that the mean-field assumption of VB is too simplistic.

There are several directions in which future research may build on the work presented in the
current paper. First, the quality of the variational approximation should be improved by increas-
ing the tightness of the variational lower bound. One possible way to achieve this is to inject
structure into the formulation of the variational distribution and to recognise that the model
parameters are related in a hierarchical fashion (Ranganath et al., 2016). Alternatively, the
expressiveness of the variational distribution could be enhanced by employing more flexible
families of distributions such as mixtures or normalising flows (Jaakkola and Jordan, 1998,

Rezende and Mohamed, 2015). A second direction for future research is to develop an online
inference method which will enable near real-time learning and prediction of individual prefer-
ences. Hoffman et al. (2013) establish connections between VB and stochastic optimisation and
show how VB can be applied to streaming data.
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A Gibbs sampler

1. Update aB,k for all k ∈ {1, . . . ,K} by sampling aB,k ∼ Gamma
(
νB+K

2 , 1
A2

B,k
+ νB

(
Σ−1

B

)
kk

)
2. Update ΣB by sampling ΣB ∼ IW

(
νB + N + K − 1, 2νBdiag(aB) +

∑N
n=1(µn − ζ)(µn − ζ)>

)
3. Update aW,k for all k ∈ {1, . . . ,K} by sampling aW,k ∼ Gamma

(
νW +K

2 , 1
A2

W,k
+ νW

(
Σ−1

W

)
kk

)
4. Update ΣW by sampling
ΣW ∼ IW

(
νW +

∑N
n=1 Tn + K − 1, 2νWdiag(aW) +

∑N
n=1

∑Tn
t=1(βnt − µn)(βnt − µn)>

)
5. Update ζ by sampling ζ ∼ N(µζ ,Σζ), where

Σζ =
(
Ξ−1

0 + NΣ−1
B

)−1
and µζ = Σζ

(
Ξ−1

0 ξ0 + Σ−1
B

∑N
n=1 µn

)
6. Update µn for all n ∈ {1, . . . ,N} by sampling µn ∼ N(µµn

,Σµn
), whereΣµn

=
(
Σ−1

B + TnΣ
−1
W

)−1

and µµn
= Σµn

(
Σ−1

B ζ + Σ−1
W

∑Tn
t=1 βnt

)
7. Update βnt for all n ∈ {1, . . . ,N} and t ∈ {1, . . . ,Tn}:

a) Propose β̃nt = βnt +
√
ρchol(ΣW)η, where η ∼ N(0, IK).

b) Compute r =
P(ynt |Xnt ,β̃nt)φ(β̃nt |µn,ΣW )
P(ynt |Xnt ,βnt)φ(βnt |µn,ΣW ) .

c) Draw u ∼ Uniform(0, 1). If r ≤ u, accept the proposal. If r > u, reject the proposal.

B E-LSE

We take a second-order Taylor series expansion of gnt =
{
ln

∑
k∈Cnt

exp(Xntkβnt)
}

around µβnt
:

gnt(βnt) ≈ gnt(µβnt
) + ∇gnt(µβnt

)[βnt − µβnt
] +

1
2

[βnt − µβnt
]>∇2gnt(µβnt

)[βnt − µβnt
] (26)

Then,

Eq{gnt(βnt)} ≈gnt(µβnt
) +

1
2

tr
(
∇2gnt(µβnt

)Σβnt

)
≈ ln

∑
k∈Cnt

exp(Xntkµβnt
) +

1
2

tr
((

X>nt
(
diag(pnt0) − pnt0 p>nt0

)
Xnt

)
Σβnt

)
,

(27)

where p0
nt j =

exp(Xnt jµβnt )∑
k∈Cnt

exp(Xntkµβnt )
and pnt0 =

{
p0

ntm

}
m∈Cnt

is a column-stacked vector of all p0
ntm in Cnt.
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C Optimal densities of conjugate variational factors

C.1 q∗(aB,k) and q∗(aW,k)

q∗(aB,k) ∝ expE−aB,k

ln P

aB,k|s,
1

A2
B,k

 + ln P(ΣB|ωB, BB)


∝ expE−aB,k

(s − 1) ln aB,k −
aB,k

A2
B,k

+
ωB

2
ln BB,kk −

1
2

BB,kk

(
Σ−1

B

)
kk


∝ exp

(νB + K
2

− 1
)

ln aB,k −

 1
A2

B,k

+ νBE−aB,k

{(
Σ−1

B

)
kk

} aB,k


∝ Gamma(cB, dB,k),

(28)

where cB = νB+K
2 and dB,k = 1

A2
B,k

+ νBE−aB,k

{(
Σ−1

B

)
kk

}
. Furthermore, we note that EaB,k = cB

dB,k
.

q∗(aW,k) can be derived in the same way. We have q∗(aW,k) ∝ Gamma(cW , dW,k) with cW = νW +K
2

and dW,k = 1
A2

W,k
+ νWE−aW,k

{(
Σ−1

W

)
kk

}
. Moreover, EaW,k = cW

dW,k
.

C.2 q∗(ΣB) and q∗(ΣW)

q∗(ΣB) ∝ expE−ΣB

ln P(ΣB|ωB, BB) +

N∑
n=1

ln P(µn|ζ,ΣB)


∝ expE−ΣB

−ωB + K + 1
2

ln |ΣB| −
1
2

tr
(
BBΣ

−1
B

)
−

N
2

ln |ΣB| −
1
2

N∑
n=1

(µn − ζ)>Σ−1
B (µn − ζ)


= exp

−ωB + N + K + 1
2

ln |ΣB| −
1
2

tr

Σ−1
B E−ΣB

BB +

N∑
n=1

(µn − ζ)(µn − ζ)>




∝ IW(wB,ΘB),
(29)

where wB = νB + N + K − 1 and ΘB = 2νBdiag
(

cB
dB

)
+ NΣζ +

∑N
n=1

(
Σµn

+ (µµn
− µζ)(µµn

− µζ)
>
)
.

We use E
(
µnµ

>
n
)

= µµn
µ>µn

+ Σµn
and E

(
ζζ>

)
= µζµ

>
ζ + Σζ . Furthermore, we note that E{Σ−1

B } =

wBΘ
−1
B and E{ln |ΣB|} = ln |ΘB| + C, where C is a constant. q∗(ΣW) can be derived in the

same way. We have q∗(ΣW) ∝ IW(wW ,ΘW) with wW = νW +
∑N

n=1 Tn + K − 1 and ΘW =

2νWdiag
(

cW
dW

)
+

∑N
n=1 TnΣµn

+
∑N

n=1
∑Tn

t=1

(
Σβnt

+ (µβnt
− µµn

)(µβnt
− µµn

)>
)
. Moreover, E{Σ−1

W } =

wWΘ
−1
W and E{ln |ΣW |} = ln |ΘW | + C, where C is a constant.
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C.3 q∗(ζ)

q∗(ζ) ∝ expE−ζ

ln P(ζ |ξ0,Ξ0) +

N∑
n=1

ln P(µn|ζ,ΣB)


∝ expE−ζ

−1
2
ζ>Ξ−1

0 ζ + ζ>Ξ−1
0 ξ0 −

N
2
ζ>Σ−1

B ζ +

N∑
n=1

ζ>Σ−1
B µn


∝ exp

−1
2

ζ> (
Ξ−1

0 + NE−ζ
{
Σ−1

B

})
ζ − 2ζ>

Ξ−1
0 ξ0 + E−ζ

{
Σ−1

B

} N∑
n=1

E−ζµn




∝ Normal(µζ ,Σζ),

(30)

where Σζ =
(
Ξ−1

0 + NE−ζ
{
Σ−1

B

})−1
and µζ = Σζ

(
Ξ−1

0 ξ0 + E−ζ
{
Σ−1

B

}∑N
n=1 E−ζµn

)
. Furthermore,

we note that Eζ = µζ and Eµn = µµn
.

C.4 q∗(µn)

q∗(µn) ∝ expE−µn

ln P(µn|ζ,ΣB) +

Tn∑
t=1

ln P(βnt|µn,ΣW)


∝ expE−µn

−1
2
µ>nΣ

−1
B µn + µ>nΣ

−1
B ζ −

Tn

2
µ>nΣ

−1
W µn +

T∑
t=1

µ>nΣ
−1
W βnt


∝ exp

−1
2

µ>n (
E−µn

{
Σ−1

B

}
+ TnE−µn

{
Σ−1

W

})
µn − 2µ>n

E−µn

{
Σ−1

B

}
E−µn
{ζ} + E−µn

{
Σ−1

W

} Tn∑
t=1

E−βnt
βnt




∝ Normal(µµn
,Σµn

),
(31)

whereΣµn
=

(
E−µn

{
Σ−1

B

}
+ TnE−µn

{
Σ−1

W

})−1
and µµn

= Σµn

(
E−µn

{
Σ−1

B

}
E−µn
{ζ} + E−µn

{
Σ−1

W

}∑Tn
t=1 E−µn

βnt

)
.

Furthermore, we note that Eµn = µµn
and Eβnt = µβnt

.

C.5 q∗(βnt)

We consider relevant terms of ln P(y1:N , θ), which remain non-zero after differentiation:

f (βnt) = −
1
2

(βnt − µn)>Σ−1
W (βnt − µn) +

∑
j∈Cnt

ynt jXnt jβnt + ln

∑
k∈Cnt

exp(Xntkβnt)

 (32)
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Eq{ f (βnt)} = −
wW

2
(µβnt

− µµn
)>Θ−1

W (µβnt
− µµn

) −
wW

2
tr(Σβnt

Θ−1
W ) −

wW

2
tr(Σµn

Θ−1
W )

+
∑
j∈Cnt

ynt jXnt jµβnt
+ Eq

ln
∑
k∈Cnt

exp(Xntkβnt)

 (33)

where Eq

{
ln

∑
k∈Cnt

exp(Xntkβnt)
}

is obtained using the delta method (see Section B). The required
gradients are:

∂Eq{ f (βnt)}
∂µβnt

= −wWΘ
−1
W (µβnt

− µµn
) + X>nt(ynt − pnt0)

+ X>nt

(
diag(pnt0) − pnt0 p>nt0

)(
XntΣβnt

X>nt pnt0 −
1
2

diag(XntΣβnt
X>nt)

) (34)

∂Eq{ f (βnt)}
∂vec(Σβnt

)
= −

1
2

vec
(
wWΘ

−1
W + X>nt

(
diag(pnt0) − pnt0 p>nt0

)
Xnt

)
(35)

D True population parameters for the simulation study

ζ =
[
−1.4 0.8 1.0 1.5

]>
, Σ =


[r]1.0 0.8 0.8 0.8

0.8 1.0 0.8 0.8
0.8 0.8 1.0 0.8
0.8 0.8 0.8 1.0

, ΣB = 3
2 · Σ, ΣW = 1

2 · Σ.
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