
TACTICAL TRANSPORT PLANNING
UNDER IMPERFECT INFORMATION BY
COMBINING MACHINE LEARNING
AND DISCRETE OPTIMIZATION

EMMA FREJINGER
Associate Professor, Department of Computer Science
and Operations Research, Université de Montréal

CN Chair in Optimization of Railway Operations

�2

CONTENT OF THIS TALK

…are hard to solve, in fact,
too hard to process or too
time-consuming to solve for
humans…

… and they occur in an
environment that changes over
time and whose evolution is
uncertain.

Large-scale real-world decision-making
problems…

Operations
Research

Machine
Learning

This talk is about combining machine
learning and operations research to solve
large-scale decision-making problems.

Second part: novel methodology in the
context of a railway application

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

MACHINE LEARNING (ML)

▸ Acquisition of knowledge by
extracting patterns from data

▸ Ingredients of most machine/
statistical learning algorithms: data, a
model, means to link the two - infer
values of parameters (cost function
and optimization procedure)

▸ Supervised learning: data consists of
examples that are described by
certain features and a corresponding
label

y = f(x; θ)
(x(i) , y(i)) i = 1,…, m

�3

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

MACHINE LEARNING - EXAMPLES OF
EXTENSIVELY STUDIED PROBLEMS
▸ Analyzing and describing visual

content

▸ Machine Translation

▸ Important tasks in many applications

Xu et al., Show, attend and tell: Neural
image caption generation with visual
attention, 2016. ArXiv: 1502.03044v3

�4

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

STATISTICAL LEARNING -
DEMAND FORECASTING EXAMPLE
▸ Predict how demand varies over

time, alternatives to statistical time
series models

▸ Predict user behavior, e.g., choice
of path and choice of transport
service in a network

▸ Route choice in transportation

▸ Inverse reinforcement learning
or imitation learning in ML

�5

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

WHY ALL THE SUCCESS NOW?
▸ Massive amount of high

quality data

▸ Flexible models

▸ Computing power

▸ Algorithms
�6

Huge success in automating
tasks that are rather easy for
humans but hard to formalize.

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

OPERATIONS RESEARCH

▸ Broad field focused on solving
complex decision-making
problems that are too hard or too
time-consuming for humans to
solve

▸ Non-linear continuous
optimization algorithms are an
essential ingredient of machine
learning, here we focus on discrete
optimization

Machine
Learning (ML)

Data Centric

Decision Centric

Operations
Research (OR)

�7

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

BACKGROUND AND MOTIVATION

A FAMOUS PROBLEM

▸ The traveling salesman problem:
Given a list of cities and distances
between each pair, find the shortest
route that visits each city and returns
to the original city.

▸ Easy to understand but hard to solve

▸ TSP with 20 cities has 19!/2 solutions
= 60,822,550,000,000,000

▸ Effective algorithms exist to solve
large instances (one of the largest has
85,900 cities!)

Don’t get addicted!
Concorde TSP solver app

Book: In the pursuit of the traveling salesman:
Mathematics at the limits of computation,
William Cook, Princeton University Press, 2012.

�8(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

EXAMPLE: DISCRETE OPTIMIZATION
AND ML COMBINED
▸ ML algorithm predicts users’ behavior

in a transport network

▸ OR methodology solves a decision-
making problem taking users’
reactions into account

▸ Pricing at certain arcs (network
pricing)

▸ Planning of new infrastructure
(network design / facility location)

▸ Control traffic flow (flow capture)

�9

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

THE SUCCESS OF OR

▸ A wide range of real-word applications
rely on operations research
methodologies: scheduling, energy grid
management, vehicle routing, service
network design, fleet management, …

▸ Impressive results over the past two
decades: more than 265,000x
algorithmic speedup!

▸ The environment is assumed to be
known perfectly in a majority of the
applications.

Problems that would have
taken 7 years to solve in 1991,
take one second now [2003].

George Nemhauser
Georgia Institute of Technology

CPLEX and Gurobi solvers, assuming
conservative 1000x machine speedup,
1991-2003. �10

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

MACHINE LEARNING + DISCRETE OPTIMIZATION

ML is used to characterize uncertainty in the environment.
ML predictions and optimization are used in sequence.
Majority of models used in practice.

ML and optimization are integrated and interplay.
Examples: bilevel optimization, « hybrid » algorithms

ML and optimization are integrated, interplay and
conduct learning through interaction with the
environment.
Example: integrated model adapts to a changing
environment, e.g., user behavior is changing over
time

Interact

Interplay

Understand

�11

BACKGROUND AND MOTIVATION

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

Interplay

�12

BACKGROUND AND MOTIVATION

MACHINE LEARNING + DISCRETE OPTIMIZATION

LEADER first selects y, anticipating
the follower’s reaction x

FOLLOWER selects x from lower
level feasible set X(y) that
maximizes expected utility

max
x,y

f(x, y)

x ∈ arg max
x′�∈X(y)

Eε[U(x′�, y, ε)]

Subject to: (x, y) ∈ Y

An example of bilevel optimization
problem important to transport planning

Lower level is modelled with a
probabilistic choice model: non-linear
optimization problem with strong
combinatorial features

Dan & Marcotte (2019) on competitive facility
location

Gilbert, Marcotte, Savard (2014) on logit network
pricing

Morin, Frejinger, Gendron (2019) on flow capture

Example

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

Interplay

�13

BACKGROUND AND MOTIVATION

MACHINE LEARNING + DISCRETE OPTIMIZATION
A view - by no means exhaustive

▸ ML used as a tool for approximating complex and time-consuming tasks in OR algorithms,
e.g, branching for enumerative approaches (survey by Lodi and Zarpellon, 2017)

▸ ML used to (heuristically) solve discrete optimization problems (survey by Bengio et al.,
2018)

▸ Discrete optimization for ML algorithms (e.g., Bertsimas and Shioda, 2017; Grünlück et al.,
2017)

▸ Learning optimization models from data

▸ Constrained models (Lombardi et al., 2017; Hewitt and Frejinger, 2019)

▸ Objective function: data-driven inverse optimization (e.g., Esfahani et al., 2017) inverse
reinforcement learning (Ng and Russell, 2000), dynamic discrete choice models (Rust,
1986)

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

E. Larsen, S. Lachapelle, Y. Bengio,
E. Frejinger, S. Lacoste-Julien & A. Lodi

E. Larsen & E. Frejinger

Predicting tactical solutions to
operational planning problems
under imperfect information

ArXiv:1807.11876v3

In brief:

Combine machine learning and discrete
optimization to solve a problem that we
could not solve with any existing
methodology.

Challenges:

Very restricted computing time budget.
Imperfect information.

intermodal.iro.umontreal.ca | Page !16

CONTEXT
LE

VE
L

O
F

D
ET

A
IL

 O
F

SO
LU

TI
O

N Fully detailed solution -
implementable

Description of solution -
level of detail that is relevant

to the tactical decision
problem

Value of the
solution

Medium term
« tactical »

Short term
« operational »

Long term
« strategic »

Planning horizon and increasing level of information

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page !17

CONTEXT
C

O
M

PU
TI

N
G

 T
IM

E
B

U
D

G
ET

Reasonable computing time -
within the time budget for the

operational problem

Much shorter than the
time it takes to solve the

full problem under perfect
information

seconds to
minutes

milli-
seconds

Medium term
« tactical »

Short term
« operational »

Operational problem of interest:
Compute solution under

perfect information

Compute description of solution
to operational problem under

imperfect information

Planning horizon and increasing level of information

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page !18

CONTEXT

Solve deterministic
optimization problem

mathematical programming

High-precision solution

Reasonable computing time

Operational problem of interest:
Compute solution under

perfect information

Machine learning
predict the tactical solution

descriptions

High-level solution

Very short computing time
Stochastic programming

Compute description of solution
to operational problem under

imperfect information

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

SOME NOTATION

Solution

Problem instance x = [xa, xu]xa

ȳ* = g(y*(x))

Perfect

information

Imperfect

information

Deterministic

problem

Tactical solution
description

Medium term
« tactical »

Short term
« operational »

Planning horizon and increasing level of information

!19

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

y*(x) = arg min
y∈Y(x)

C(x, y)

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

Short term
« operational »

Medium term
« tactical »

Load planning for
double-stack trains

Capacity management,
e.g., bookings

Request Railcar

supply

Accepted

bookings

Accept / reject

Planning horizon and increasing level of information

!20
(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

!21

x = [xa, xu]

Pr
ob

le
m

in

st
an

ce

y*(x) = arg min
y∈Y(x)

C(x, y)

O
pe

ra
tio

na
l

so
lu

tio
n

ȳ* = g(y*(x))

Ta
ct

ic
al

so

lu
tio

n

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

APPLICATION - LOAD PLANNING

!22

Containers have different
characteristics, for example:

Size

Weight

The loading (operational problem) of
the containers onto railcars crucially
depends on weight

Weight is unknown at the tactical
level

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

IDEA IN BRIEF

!23

We know how to solve the deterministic problem - let’s
use that!

Generate a lot of data and pretend that we have
perfect information - solve the discrete optimization
problem with an existing solver

Let machine learning take care of the uncertain part:
hide the information that is not available at prediction
time - find best possible prediction of ȳ*

State-of-the-art ML model Parameters

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

Optimal solution to deterministic problem for given
Optimal prediction conditional on , expectation over distribution of
Two-stage stochastic programming formulation

!24

xa xu

x = [xa, xu]

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

!25

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

METHODOLOGY

(x(i)
a , ȳ*(i)) i = 1,…, m

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

(x(i) , y*(i)) i = 1,…, m

!26

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

Assess predictive performance, e.g.Train and validate model

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Machine learning

training, validation, test data

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

METHODOLOGY

(x̃(i)
a , ȳ*(i)) i = 1,…, m

Problem instances and solutions

(perfect information)

Pr
ob

le
m

D
at

a

(x(i) , y*(i)) i = 1,…, m

Machine learning

training, validation, test data

Tr
ai

ni
ng

 &

pe
rf

or
m

an
ce

Assess predictive performance, e.g.Train and validate model

!27

2 The prediction problem
Let a particular instance of an operational (deterministic) optimization problem be represented
by the input feature vector x. The optimal operational solution (i.e., that containing values of
all decision variables) is y⇤(x) :⌘ arg infy2Y(x) C(x,y), where C(x,y) and Y(x) denote the cost
function and the admissible space, respectively. Ahead of the time at which the operational problem
is solved, we wish to predict certain characteristics of the optimal operational solution, based on
currently available information. We call such a characterization a tactical solution description.
Information on a subset of the feature vector x may be unavailable or incomplete at the time
of prediction and we define the partition x = [xa,xu] accordingly, where xa contains available
features and xu unavailable or yet unobserved ones. Furthermore, we denote by g(.) the mapping
from the fully detailed operational solution to the tactical solution description featuring the level
of detail relevant to the context at hand. Hence, g(y) is the synthesis of the operational solution
y according to the tactical solution description embedded in g(.).

Our goal is to compute or at least approximate the solution ȳ⇤(xa) to the following two-stage,
optimal prediction stochastic programming (see, e.g., Birge and Louvaux, 2011, Kall and Wallace,
1994, Shapiro et al., 2009) problem:

ȳ⇤(xa) :⌘ arg inf
ȳ(xa)2Ȳ(xa)

�xu{kȳ(xa)� g(y⇤(xa,xu))k | xa} (1)

y⇤(xa,xu) :⌘ arg inf
y2Y(xa,xu)

C(xa,xu,y) (2)

where kk denotes a suitable norm (e.g. the L1- or L2-norm when the output has fixed size) and
�xu{k.k | xa} denotes either the expectation or a quantile (e.g. the median) operation over the
distribution of xu, conditional upon xa. So, ȳ⇤(xa) is the optimal prediction of the synthesis of the
second stage optimizer g(y⇤(xa,xu)), conditionally on information available at first stage. Finally,
Y(xa,xu) is the admissible space defined by the set of constraints relevant to the operational
context, whereas Ȳ(xa) is defined only by the set of constraints relevant to the tactical context.

In real-time or repeated applications, we need to generate solutions to (1) and (2) at a high
speed for any value of xa. Whenever closed-form solutions are unavailable, which usually occurs,
it is generally prohibitive to compute a solution to (1) and (2) on demand for every particular
value of xa encountered. As detailed in Section 3, our methodology generates a prediction function
that can take any value of xa as input and outputs accurate predictions by⇤(xa) of ȳ⇤(xa). The
predictions are given by by⇤(xa) ⌘ f(xa;✓) where f(·; ·) is a particular ML model and ✓ is a vector
of parameters.

Stochastic Programming. A number of alternative approaches and methods are available from
the field of stochastic programming to address the problem defined by (1) and (2). For general
specifications of C(xa,xu,y) and Y(xa,xu), that is, essentially, whenever (1) and (2) depart from
the extensively researched and documented case of linear programming, stochastic programming
resorts to approximate methods involving sampling. These methods originate from two broad areas
of research and perspectives: Monte Carlo stochastic programming (e.g., de Mello and Bayraksan,
2014, Shapiro, 2003) and simulation optimization (e.g., Fu, 2015). In the former, the solution
methods may leverage available knowledge about the inner structure of (2). In the latter, (2) is
viewed as a black box and the available knowledge consists solely in the ability to evaluate the
solution y⇤(xa,xu). (That is, y⇤(xa,xu) may be computable with a standard OR solver without any
assumption, for instance, about closed-form derivatives with respect to xa or xu.) An approximate
solution to the problem jointly defined by (1) and (2) may be obtained through one of the methods
available from Monte Carlo stochastic programming or simulation optimization for each particular
value of xa.

Methods where sampling occurs once at the outset of the solution process to convert stochastic
optimization into deterministic optimization and where sampling occurs throughout the optimiza-
tion process are respectively said to involve batch or external sampling and sequential or internal
sampling. Methods originating from the perspective of Monte Carlo stochastic programming that
are in principle available to solve (1) and (2) include sample average approximation (external)
described in (Shapiro et al., 2009, p. 155) and Kim et al. (2015) as well as versions of stochastic
approximation (internal) where a knowledge of the inner structure of (2) is introduced (Shapiro
et al., 2009, p. 230). Methods originating from the perspective of simulation optimization that are

4

MAEtest =
1
n

n

∑
i=1

f(x(i)
a ; ̂θ) − ȳ*(i)̂θ = arg min

θ

1
m′�

m′�

∑
i=1

L (f(xa; θ), ȳ*(i))

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

METHODOLOGY

Data
Historically observed instances and their solutions

Purpose: « mimic » behaviour in such data
Our approach: generate data by sampling problem instances and computing
the corresponding solutions using existing optimization model and solver

Purpose: generalization over the domain of

The input structure is governed by the information available at prediction time

The output structure is governed by the choice of solution description and can
be of fixed or variable size

Model architecture depends on input and output structures and on constraints
linking the two

!28

x

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

RELATED LITERATURE

Closest to our work are those based on supervised learning
but they focus on deterministic problems

Fischetti and Fraccaro (2017) predict optimal objective
function value
Vinyals et al. (2015) define pointer networks to solve a class
of discrete optimization problems, constraints are imposed
by changing the NMT model architecture

Nair et al. (2017) propose a reinforcement learning algorithm
combined with ILP solver for a two-stage binary stochastic
program (unconstrained binary decisions)

!29
(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

DATA GENERATION

Random sampling of container/railcar types and container weights

!30

Class Description # of containers # of platforms

A Simple ILP [1,150] [1,50]

B More containers than A
(excess demand) [151,300] [1,50]

C More platforms than A
(excess supply) [1,150] [51,100]

D Larger and harder [151,300] [51,100]

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

INPUT-OUTPUT

!31

40 ft

40 ft

53 ft

40 ft

53 ft

Input: problem instance
2 container types: 40 and 53 ft
10 railcar types: 10 most numerous in
the North American fleet

Output: tactical solution

Ta
ct

ic
al

 1
Ta

ct
ic

al
 2

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

INPUT-OUTPUT

!32

40 ft

40 ft

53 ft

40 ft

53 ft

Input: problem instance
2 container types: 40 and 53 ft
10 railcar types: 10 most numerous in
the North American fleet

Output: tactical solution

Ta
ct

ic
al

 1
Ta

ct
ic

al
 2

TACTICAL 1:
MULTILAYER PERCEPTRON /
FEED-FORWARD NETWORK

TACTICAL 2:
NEURAL MACHINE TRANSLATION (NMT) MODEL

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

TACTICAL 1: MULTILAYER PERCEPTRON

!33

Input
Fixed-size vector

Output
Fixed-size vector

Nb of assignable
containers of each type

Nb of of assignable
railcars of each type

Nb of containers of each
type in the solution

Nb of railcars of each
type in the solution

ȳ*xa

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

Multilayer perceptron (MLP): approximately 7 layers and 500 rectified linear
units (ReLU) per layer (hyper parameters)

Classification / Regression (linear units in output layer and rounding to the
nearest integer)

Training and validation
Minimization of neg. likelihood function / sum of absolute errors
Mini-batch stochastic gradient descent and learning rate adaptation by the
adaptive moment estimation (Adam) method
Regularization: early stopping
Random search for hyper parameter selection

Mean Absolute Error (MAE) over slots and containers

!34

TACTICAL 1: MULTILAYER PERCEPTRON

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

Average performance of the MLP model is very good
MAE of only 2.1 containers/slots for classes A, B and C (up to
100 platforms and 300 containers) with very small standard
deviation (0.01)

MLP results are considerably better than benchmarks

The marginal value of using 100 times more observations is fairly
small: modest increase in MAE from 0.985 to 1.304 on class A
instances)

Prediction times are negligible, milliseconds or less and with very
little variation

!35

TACTICAL 1: MULTILAYER PERCEPTRON

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page !36

Data 200K-A

examples 200K
Percentiles P5 P50 P95

ClassMLP 2.6 2.9 3.2
RegMLP 0.7 0.8 1.0
HeurV 0.3 0.4 0.8
HeurS 0.3 0.7 1.6

Table 5: Prediction time per instance (milliseconds)

available containers (input) for the RegMLP model and 20M-A data. It shows that errors occur
mainly in conditions of excess supply or excess demand.

Table 5 provides information on the distribution of the GPU time required to compute a
prediction based on input data similar to that used for training and validation of the predictor.
For example, the median time required to compute a prediction based on model RegMLP when
input belongs to class A is 0.8 milliseconds. As clearly shown by the closeness of the 5th, 50th
and 95th percentiles, the distribution of the prediction time is highly concentrated and we ought
to expect very little variations among computing times around the median value. Furthermore, it
is expected that the figures of Table 5 will vary little across input classes with a similar model.
Computational speed should instead depend on model complexity (in our case number and width
of hidden layers). Hence, whereas the operational solution of a loading problem may require a
median time ranging from 0.48 to 5.44 seconds according to the exact class of the input (Table 2),
the prediction of the tactical solution with model RegMLP is expected to require a time close to
the indicated median of 0.8 milliseconds.

Figure 2: MAE over instances with specified numbers of available slots and containers, RegMLP
model and 20M-A data

Extraneous errors. In view of the higher costs of generating harder instances, it is desirable that
models that are trained and validated on simpler instances generalize to harder instances without
specific training and validation. In contrast with the previous results where testing was conducted
on data similar to that used for training and validation, we now focus on testing performance over
a set of class D data containing the largest instances. We emphasize that instances of this nature
have not been used for training-validation.

Table 6 reports the MAE for the exact same models as in the previous section. Standard

13

TACTICAL 1: MULTILAYER PERCEPTRON

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

The models trained and validated on simpler instances (A, B and
C) generalize well to harder instances (D)

MAE of 2.85 (training on class A)
MAE of 0.32 (training on classes A, B and C)
Important variability across models with different hyper
parameters when only trained on class A (MAE varies between
0.74 and 9.05)

Numerical analysis of feasibility: there exists a feasible
operational solution for a given predicted tactical solution in 96.6%
of the instances (the share is much lower for the benchmarks)

!37

TACTICAL 1: MULTILAYER PERCEPTRON

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page

Class A instances

The average absolute error of the SAA solution is similar to
that of the ML algorithm: 0.82 compared to 0.985

The computing times for SAA vary between 1 second to 4
minutes with an average of 1 minute

!38

TACTICAL 1: MULTILAYER PERCEPTRON

What if we solve a sample average approximation (SAA)
of the two stage stochastic program?

(c) Emma Frejinger emma.frejinger@cirrelt.ca

mailto:emma.frejinger@cirrelt.ca

intermodal.iro.umontreal.ca | Page !39

Output phrase
Variable-length

ȳ*

Input phrase
Fixed-length

xa

TACTICAL 2: NMT MODEL

20 tokens in 10 pairs, one per
railcar type

10 1

0,…,9 0,…,9

Represents 0 - 99
railcars of each type

Represents 0 - 999
containers of each type

10 1

0,…,9 0,…,9

100

0,…,9

6 tokens in 2 triplets, one per
container type

1 token per non-empty railcar
and an end-of-sequence token

157 possible tokens for non-
empty railcars

Each token stands for a distinct
feasible triplet:

Railcar type

Nb of assigned 40 ft containers

Nb of assigned 53 ft containers
Modulates the effective length of the
input sequence. Vinyals et al. (2016)

PLEASE CONTACT EMMA FREJINGER IF YOU’RE INTERESTED IN THIS TOPIC.
THESE SLIDES ARE LEFT OUT FROM THE PUBLICLY SHARED VERSION OF THE PRESENTATION BECAUSE THE

RESULTS HAVE NOT BEEN PUBLISHED.
EMMA.FREJINGER@CIRRELT.CA

Conclusion and perspectives

Novel combinations of machine
learning and operations research
methodologies have potential to
solve hard decision-making
problems under imperfect
information.

We presented such a methodology
that allows to predict solutions to a
decision-making problem in very
short computing time.

A lot of research left to be done and
numerous applications to explore.

Thank you!
emma.frejinger@cirrelt.ca

�41

