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Abstract

Understanding the variability of public transport travel times is essential for various reasons,
e.g. for gaining knowledge of the deteriorations and ameliorations in daily traffic, for providing
adequate (real time) information to customers and for optimizing transit schedules.
This paper deals with this issue by modeling the day-to-day variability of running times of
urban buses on a section level. The investigation bases on planned and actual arisen arrival and
departure time data of a selected bus route in Zurich and is conducted by the aid of statistical
distributions. In order to find the most appropriate distribution models for running times, we
present methodologies to test and choose "good" distributions and fit conventional as well as
mixture distributions.
Mixture distributions provide an improved fit to the data in terms of BIC and effect size, but
the components need to be justified. This work also introduces an approach to fit meaningful
component distributions.

Keywords
public transport, travel time variability, travel time distributions, section running time, mixture
distribution
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1 Introduction

The travel time of public buses is subject to variability, which arises due to the stochastic nature
of various factors influencing bus operations. This variability is perceived inconvenient, as it
introduces uncertainty and additional cost to travelers and operators. Therefore, the service
quality of public transport depends to a great extent on the travel time variability. Hence it is
important to have precise knowledge about the variability of bus travel times.

Statistical distributions can describe the nature and pattern of the travel time variability. However,
the modeling of distributions of bus travel time gained of importance only recently, as a big
amount of data is nowadays easily available and needs to be interpreted. Statistical distributions
are a powerful tool, as they can describe the inherent variability in data with a limited amount
of parameters. An appropriate choice of the travel time distribution is an essential input to
simulation of transit systems, reliability analysis and prediction of delays.

Various studies put significant effort in fitting travel time distributions (e.g. Mazloumi et al.

(2010), Xue et al. (2011), Kieu et al. (2014), or Ma et al. (2016)). The findings are strongly
influenced by the type and aggregation of the tested data (Büchel and Corman, 2018).

In the manuscript at hand, we focus on section running times (i.e. the time that a bus takes for
traveling form a station to the next station). We assess the fitting performance of traditional
(unimodal) and mixture distributions to a urban bus line in Zurich. For the fitting of distribu-
tions we introduce a training and testing approach, as the "best fitting" distribution should be
reproducible. Furthermore, we put special focus on applying mixture distributions, and in future
work we try to find meaningful component distributions, so that the final distribution doesn’t
just show a good fit, but have meaningful components in addition.

2 Literature Review

Studies that investigate the probability distribution of bus running times on a section level are
Taylor (1982), Xue et al. (2011), Cats et al. (2014), Kieu et al. (2014), and Ma et al. (2016).
Generally, it is reported that running time on section levels are highly variable and depend
on temporal data aggregation (Büchel and Corman, 2018). Often studies could not identify
one distribution that provided the best fit on all considered sections. Normal (Taylor (1982),
Xue et al. (2011) ) or log-normal distributions (Cats et al. (2014), Kieu et al. (2014) are the
most proposed distributions. When buses have similar characteristics as cars (e.g. acceleration,
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maximal speed) and share the same road space, the statistical modeling of buses and cars can
be similar as well. Travel times of cars are often modeled right-tailed by the aid of log-normal
distributions. Therefore, it is comprehensible that today, to statistically model running times of
buses, mostly log-normal distributions are proposed

Van Lint and Van Zuylen (2005) identified in car traffic four phases (free-flow conditions,
congestion onset, congestion, and congestion dissolve) that resulted in distinctively different
distribution patterns of travel time variability. Based on this finding, distributions can be assumed
to be a sum of component distributions representing different phases of traffic. Various studies
have investigated the performance of mixture distributions in fitting travel time distributions
compared to traditional models and suggested a superior performance (see e.g. Guo et al. (2010),
or Susilawati et al. (2013)). Based on those findings, Ma et al. (2016) suggested the use of
mixture distributions for the bus mode as well.

For modeling the distributions, Ma et al. (2016) considered Gaussian mixture distributions and
set the maximum number of component distributions to be 3. The parameters can be related
to free flow, recurrent, and non-recurrent service states. However, it remains unclear in this
study how many components were actually used. Also Chen and Sun (2017) used Gaussian
mixture distributions and described the same three service states. Their experimental results,
however, pointed out that depending on the period 1-2 components (off-peak period) or 3-4
components (peak period) yield the best fit to the data used. Applying mixture distributions
posed new questions. The components, which represent service states, should be explainable.
Also the amount of needed components should be a priori determinable.

3 Data and Methodology

3.1 Data

For this study we consider an urban bus line in Zurich, Switzerland, belonging to the network of
Verkehrsbetriebe Zurich (VBZ). The line 32, which is a trolleybus line that crosses the city, as
seen in Fig. 1 is chosen for the analysis. This bus line is round 11 km long and runs from Zurich,
Stassenverkehrsamt (STRV) to Zürich, Holzerhurd (HOLZ). It serves Goldbrunnenplatz, where
a number of buses depart to the agglomeration of western Zurich. At Kalkbreite / Bhf Wiedikon
it connects to the tram lines 2 and 3 and to the train network. It passes Langstrasse, a highly
populated nightlife area and connects at Limmatplatz to tram 4, 13 and 17. At Bucheggplatz
and at Glaubtenstrasse Süd it connects to bus lines. The line operates from 5 am to 1 am, with
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a minimal planned headway of 6 min. The service frequency varies from 10 bus/h (peak) to
6 bus/h (evening off-peak). This line is one of the most delayed line in the public transport
network of Zurich. VBZ issues all planned and real occurred arrival and departure times of the
buses and trams at the stations of the network. This data is publicly available and can be found
on the open data portal of the city of Zurich (https://data.stadt-zuerich.ch). The data is captured
to the accuracy of seconds. For this study, the data of 2018 is used. The raw data is filtered for
regular trips on line 32, meaning special routes to and from depots / garages are neglected. It
is important to note that due to this filter the occurrence of extreme values (i.e. high delays)
need to be interpreted with care as buses with high delays are often subject to some dispatch
measure.

Figure 1: Public transport network of Zurich with highlighted line 32 (red).
Source: https://www.stadt-zuerich.ch/vbz/de/index/fahrplan/liniennetzplaene.html;
27.03.2018, adapted)

In Fig. 2 the characteristics of the sections of the line 32 are presented in the direction of travel
Strassenverkehrsamt - Holzerhurd. The table informs about traffic signals (TraSig), pedestrian
crossings (Ped) and no right of way conflicts (nRoW) on the sections. At all traffic lights, public
transport is treated with priority, however, there are sometimes conflicts between different lines /

modes of public transport.

Before analyzing the day-to-day variability of running times on a section level, we first have a
preliminary look towards the available data. Therefore, we first analyze the variation of section
running times over the course of the year. Fig. 3 shows the 25th, 50th, and 75th percentile
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Figure 2: Characteristics of the analyzed sections of the bus route 32. Amounts of traffic signals
(TraSig), Ped (Pedestrian Crossings), no right of ways (nRoW).

of all running times at the section Zehntenhausplatz - Hungerbergstrasse measured in 2018.
The time series of the running time data is not a strictly stationary process, meaning that as
its unconditional joint probability distribution changes to some extent when shifted in time.
However, we can visually assume a wide-sense stationarity for the percentile values with the
exception of the summer holiday period (July / August). Meaning that the first moment (i.e.
the mean) and autocovariance are constant with respect to time. In the summer holiday period
(July / August) are the 50th and 75th percentile values lower than during the rest of the year.
Generally, the higher percentile values show more fluctuation.

Figure 3: Percentile values of the running time over the course of the year 2018 at the section 24
(Zehntenhausplatz-Hungerbergstrasse)

In Fig. 4, the 25th, 50th, and 75th percentile of the running times at the section Friesenbergstrasse
- Friesenberg is shown. The picture is quite different from the previous one. There are some
times periods where the percentile values only fluctuate a little, whereas some other times there
is quite a lot of fluctuation. Furthermore, the percentile values seem similar for periods of some
weeks / months and there are distinct changes between such periods. The fluctuations are due
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to construction going on over the course of the year 2018. The construction lead to different
restrictions to the buses. We can not assume the curves to be stationary.

Figure 4: Percentile values of the running time over the course of the year 2018 at the sectionn 4
(Friesenbergstrasse-Friesenberg)

Next, we investigate the variation of running times over the course of a day. In order to do
this, we look at running time data of sections whose yearly pattern can be assumed to be
stationary. Fig. 5 shows the variation of the running times over the course of the day at the
section Lägernstrasse - Bucheggplatz. The figure indicates, that the time of the day has almost
no influence to the percentile values of the running times in this section.

Figure 5: Course of the day section 17 (Lägernstrasse - Bucheggplatz)

In Fig. 6, on the other side, we see a very distinct daily pattern. In the morning and in the
afternoon, the percentile values are remarkably higher than during the rest of the day. Especially
for the higher percentiles (50th and 75th) the effect is clear.

The reasons for this two preliminary investigations is straight forward. We don’t want to
aggregate obviously different processes together. We want to find distributions that characterize
more or less stationary events. As in many of the 25 sections of the investigated bus line there
was construction going on, we focus in the following on the first 9 weeks of 2018, as in this
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Figure 6: Course of the day section 24 (Zehntenhausplatz-Hungerbergstrasse)

weeks the variations seem stationary. We study the inter-peak (10:00-14:00) and the peak
(16:00-18:00) running times.

3.2 Distribution Fitting

For each section, individual distributions and mixture distributions are fitted at peak and inter-
peak conditions. For individual distributions, normal, log-normal, Cauchy, Weibull and logis
distributions are chosen, as literature suggest that they perform the best under specific testing
conditions. The parameters are estimated using the parametric maximum likelihood method.
For mixture distributions, we fit models with normal and log-normal component distributions.
Normal component distributions are chosen, as they are used in Ma et al. (2016) and Chen
and Sun (2017), as well as in the vast majority of car traffic travel time studies. Log-normal
component distributions are chosen, as log-normal distributions provide in general an improved
fit compared with normal distributions and as they are right tailed. The parameters of the mixture
distributions are estimated for 1, 2, and 3 component distributions.

In many studies, hypothesis tests are performed. We do not do this here due to a philosophical
reason: We are not looking for a "true" distribution, but for a good and practical approximation
to the data. With hypothesis tests, if is usually tested if the difference between the data and
the candidate distribution might be random. If a lot of data is available, differences between
data and candidate distributions are almost always significant. If hypothesis tests are carried
out, they should consider that the theoretical distribution may not be fitted from the empirical
data. Approaches to overcome this issues are parametric bootstrap approach (see e.g. Stute et al.

(1993)), or a training-testing approach.
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3.3 Assessing Fit

We assess the quality of the fit and decide on the best fitting distributions by two means: by the
Bayesian information criterion (BIC) and by the effect size.

In order choose the best performing distribution out of a set of candidate distributions, it is
often made use of the information creation technique. The Bayesian information criterion (BIC)
measures the relative quality of a statistical model by trading off the complexity (by considering
the number of parameters) and goodness-of-fit of the fitted distribution (by considering the
maximized value of the log-Likelihood). The criteria is given by:

BIC = ln(n)k − 2 ln(L̂) (1)

where k the number of parameters to be estimated, L̂ the maximized value of the likelihood
function of the estimated distribution, and n is the number of observations. The model with the
the lowest criterion value is defined as the best model.

We calculate the BIC statistic in the following way: out of our dataset we choose N = 500
observation at random, fit the candidate distribution to it, and calculate the BIC statistic. We
repeat this process M = 100 times and calculate the average BIC number.

Furthermore, we calculate the effect size. We measure the effect size by the Quantile Absolute
Deviation (QAD). This measure aims to compare quantiles of the two distribution based on
the the entire range of probabilities [0, 1]. The quantile deviation of two populations is the
average absolute distance between the quantiles of two populations. Suppose F−1 and G−1 are
quantile functions for the two statistical populations corresponding to the cumulative distribution
functions, F and G respectively, then QAD is given by:

QAD =

∫ 1

0

∣∣∣F−1(p) −G−1(p)
∣∣∣ dp (2)

The effect size is evaluated in the following: out of our dataset we choose N1 = 500 and
N2 = 500 mutual exclusive observations at random. One can think of N1 as training data and
N2 as validation data. The candidate distribution is fitted to the N1 observation. We repeat this
process M = 100 times and calculate the effect size based on fitted distribution and the data N2.
An example of the calculation is given in Fig. 7. The red curve is the quantile function of the
empirical data (N2), the green curve the is the fitted distribution based on data N1, and finally
the blue curve is the difference. The integral of the blue curve is the QAD.
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Figure 7: Example of determination of QAD

4 Results

4.1 Individual Distributions

In a first step, we fit individual (=non mixture) distributions to the section running times of bus
line 32. We look at the inter peak (10:00 - 14:00) running times of all sections belonging to
this route. The resulting BIC-values and QAD-values are shown in Fig. 8. The BIC value is a
criterion for model detection, which is based on the likelihood function. The model with the
lowest BIC is preferred. QAD, on the other side, is a measure of effect size. The smallest effect
size is in general preferred.

Considering BIC values, the lowest big values for each section is represented in the darkest
green. According to Kass and Raftery (1995), a difference in BIC values between 0 and 2 is
considered as "not worth more than a bare mention", and a difference in BIC values between 2
and 6 is considered as"postive", and a difference in BIC values between 6 and 10 is considered
as strong". As the calculated BIC value is a mean value, it can be expected to grow linearly with
more sample data. Therefore, the exact value as well as differences depend on the sample size.
Hence, we don’t look at the absolute difference in BIC but at relative differences. Candidate
distributions with a difference in BIC values to the lowest one of less than 0.1% are shown in a
lighter green, and such with differences in BIC values to the lowest one between 0.1% and 1%
shown in the lightest green. We see that the log-normal distribution is in most of the times the
best ranked distribution (in 19 out of 25 cases). If it is not the best ranked distribution, it has
in four out of six cases a difference in BIC of less than 1% to the best performing distribution.
Often, when the log-normal distribution is not the top ranked distribution, the logis distribution
is the best performing distribution. Additionally, the logis distribution is often the second best
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ranked distribution. Rarely the Chauchy is best ranked, but mostly the difference in BIC value
between the Cauchy candidate distribution and the best ranked distribution is more than 1%. It
seems not adequate to suggest its use for all sections. On the right size of the Fig. 8 we see the
QAD value (=effect size) of the unimodal candidate distributions at inter-peak conditions. The
image is similar - log-normal seems to perform best in average, followed by the logis distribution.
Cauchy performs quite bad in terms of the measure of effect size, this as it provides a very bad
fit for extreme (very high and very low) values. The color-code of the effect size is a continuous
scale from 0s (dark green) to 4s (white). The effect size is remarkably small in many cases.

Figure 8: BIC- and QAD value of individual candidate distributions at inter-peak conditions

We perform same procedure for the peak period (16:00-18:00) running times of all sections.
Still log-normal candidate distributions seem to perform in general the best. It is top ranked in
18 out of 25 cases. The sections, in which the log-normal distribution is not the best performing
distribution at peak period are similar to the sections in which the log-normal distribution is not
the best performing distribution at inter-peak period. Also Cauchy distribution is sometimes
the top-ranked distribution in terms of BIC. However, in general it lays underneath the other
candidate distributions. Logis is again often the second best distribution after log-normal,
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however the differences in BIC compared with the best performing distribution are bigger
than during inter-peak conditions. In terms of effect size, log-normal performs best followed
by logis. Cauchy, again, doesn’t perform good, due to big differences at very high and low
percentile values. However, it is possible that with an other measure of effect size, cauchy could
perform better. Compared to the inter-peak conditions, the effect size is for sections 11-14 and
21-25 much higher, whereas for the other sections the difference is not that high. This is not
astonishing, as in the preliminary investigates we have seen that these sections have a higher
percentile running times at peak conditions.

Figure 9: BIC- and QAD value of individual candidate distributions at peak conditions

4.2 Mixture Distributions

Then we fit mixture distribution for normal and log-normal distributions. Normal is chosen, as it
is often used in literature (see Ma et al. (2016),Chen and Sun (2017)). Log-normal is chosen, as
log-normal distributions perform in general the best out of the unimodal distributions (see last
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section). The following figures show the BIC and QAD values for the candidate distributions at
all sections, for peak and inter-peak conditions.

The results for inter-peak conditions are shown in Fig. 10. Generally, it can be said that log-
normal clearly outperform normal mixture distributions with the same amount of parameters,
which we have already seen in the last section for one-component distributions. This holds true
for peak and inter-peak conditions.

Figure 10: BIC- and QAD value of mixture candidate distributions at inter-peak conditions

For inter-peak as well as for peak conditions, log-normal mixture distributions with two com-
ponents seem to be often a good fit in terms of BIC. However, sometimes also a 3-component
model has the lowest BIC-value. In summary, it can be stated that at peak conditions more
components seem adequate to model the data.

Considering QAD values, using more components reduces the effect size, which could have
been expected. During inter-peak conditions using 1 or 2 components gives already a quite low
QAD. During peak conditions, on the other side, sections 21-25 need more components in order
to have a low QAD value.

11



Bus Running Time Distributions on a Section Level May 2019

Figure 11: BIC- and QAD value of mixture candidate distributions at peak conditions

5 Discussion & Further Work

The empirical data does not follow any of the candidate distributions. We can not expect
any of the candidate distribution to be the "true" distribution. A lot of parameters have an
influence on the running time distribution, without (exact) information of those parameters
the "true" distribution cannot be identified. However, there are candidate distributions which
provide a good approximation to the empirical distribution. Considering conventional (unimodal)
distributions, log-normal distributions perform well, both in terms of BIC and effect size. By
using multiple log-normal component distributions the fit can be improved significantly, which
holds specially true for peak running times.

The effect size is an adequate tool to understand the quality of fit of candidate distributions. In
comparison to hypothesis tests, it does not depend on the amount of data used. Furthermore, if
QAD is used, the effect size has some immediate real life meaning, as it can be interpreted as the
average deviation between the candidate distribution and the data. However, it is important to
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note that a major part of the QAD value usually comes from the tails of the distribution (i.e. low
and high running time values). This being said, it remains an open question whats an appropriate
effect size is. This depends on the study and is to some extent subjective. In this study we
considered QAD values smaller than 4s as good (see color code in Fig. 8 - Fig. 11).

The model selection based on the BIC value has the problem of over fitting. The more data is
used to estimate the distribution, the higher is the amount of components of the model with the
lowest BIC. A better methodology to choose the best model could be to compare the likelihood
of the fitted distribution with additional data.

In this study we use a bootstrap approach in order to fit distributions. In the era of big data, it
makes sense do so, as the main requirement to a distribution is its reproducibility. Especially
when it comes to fitting mixture distributions to data, given a different subset of sampled
data, the parameters of distributions vary remarkably. Therefore, further work should address
the development of a methodology that fits robust distributions, which are reproducible with
additional data.

We show, that log-normal mixture distribution with one or two are a good assumption for
off-peak conditions. For off-peak conditions, more components improve the fitting significantly,
considering BIC and effect size. By comparing the required modes with the characteristics of the
sections (see Fig.2), no clear conclusion can be drawn at the moment. This, however could help
understand the modes. Furthermore, the components of the distribution should be meaningful.
They should not only be introduced, but be comprehensible and add value in understanding the
bus running process.

The data is currently only available for the bus lines of Zurich. The bus system in Zurich has,
compared with other cites, a relatively high punctuality and the running times don’t vary vastly
between peak and inter-peak conditions. Having data from less punctual bus systems would
improve the understanding.

In a next step two working packages are addressed: First, we aim to identify characteristic
distributions for "normal" and "delayed" section running times, so that we can assign meaning to
the components. In a second step, we aim to understand the running time correlation from section
to section, putting special focus on partial correlations between the component distributions.
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6 Conclusion

We have shown that considering individual (unimodal) distributions, the log-normal distribution
provides the best fit to section running time data in general. However, the best fitting distribution
depends on the section and the time of the day, which aligns with previous findings. Especially
during peak period, introducing additional components, resulting in mixture distributions,
provides an improvement to the fit of the distributions. The result indicated, that mixture models
with two component distributions describe the inter-peak running times well. For peak running
times, additional components improve the fit for some sections. The assessment of the fit was
done by BIC, as well as by QAD, which measures the effect size.

In a next step the work should focus on finding meaningful component distributions. It should
be investigated if characteristic distributions on a section level can be found. Furthermore it
should be investigated, how section running times are correlated with respect to the component
distributions.
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