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Abstract 

In the present paper a direct demand modelling approach for traffic volume prediction on a 

nationwide network is presented, exploring the ability of different spatial modelling alternatives 

to be applied for such purposes. A particular focus is on the identification of variables that can 

capture the interregional demand patterns, utilizing concepts from network theory. A new 

variable called accessibility-weighted centrality is introduced, constructed by applying a set of 

modifications on the stress centrality index, tailored for the task of the annual average daily 

traffic (AADT) prediction. The results exhibit clearly that the inclusion of network theory-based 

variables in the model formulation can lead to a significant enhancement on the predictive 

accuracy. In addition to the already tested models in the literature, two spatial simultaneous 

autoregressive models are estimated and it is shown that they have the potential to be applied 

both for interpolation and forecasting since their estimated parameters are unbiased and 

consistent. A comparison of the different estimated models to the output of a traditional four-

step model is conducted to show to what extent direct demand models on nationwide scale can 

constitute a trustworthy alternative to more advanced, but definitely more data demanding and 

computationally burdensome models. 
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1. Introduction 

Many studies in the field of transport modelling have dealt with the issue of annual average 

daily traffic (AADT) prediction, developing different methodologies to tackle the problem. In 

general, two main streams of literature can be found. One that exploits different modelling 

techniques aiming at resolving the issues of spatial dependence and heterogeneity, while in the 

second stream the construction and the inclusion of more variables describing the demand 

patterns in models is investigated. The employed methodologies vary from the aspatial 

regression techniques to the statistical techniques accounting for the spatial effects. In 

particular, the later encompass two different approaches. The first one is utilizing a data-driven 

approach of spatial statistics called kriging, while the second one utilizes the geographically 

weighted regression (GWR) of the class of spatial econometric models. Nevertheless, the 

majority of the studies developed methodologies tailored for small, or medium, scale level of 

analysis in terms of network size, having mainly the purpose to interpolate AADT from known 

to unmeasured locations.  

1.1 Literature review 

Xia et al. (1999) developed a multiple regression model for estimating AADT on non-state 

roads of Florida and found that the most important contributing predictors are the roadway 

characteristics along with the area type, while socioeconomic variables were found to have an 

insignificant impact on AADT. Similarly, Mohamad et al. (1998) developed a multiple 

regression model for AADT prediction for county roads in Indiana, incorporating various 

demographic variables which were found to be significant. In a similar context, Desylas et al. 

(2003) developed a multiple regression analysis model for pedestrian flows. 

The plausibility of applying the GWR model for estimating AADT was demonstrated in another 

study (Zhao and Park, 2004) and it was shown that it can lead to the enhancement of the 

prediction accuracy, compared to the aspatial ordinary linear regression. Eom at al. (2006) 

exploited ordinary kriging for interpolating AADT for non-freeway facilities in Wake County, 

North Carolina, and concluded that its predictive capability is much better than the ordinary 

regression models. Along the same line of thought, Wang and Kockelman (2009) applied 

kriging-based methods for AADT prediciton at unmeasured locations, making use of Texas 

highway count data, and highlighted further the capability of applying kriging for prediction 

purposes on a statewide network. Selby and Kockelman (2013) explored the application of two 

spatial methods for prediction of AADT on the same statewide network (universal kriging and 

GWR), and they concluded that both methods reduce predictions errors over aspatial regression 
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techniques whereas the predictive capabilities of kriging exceed those of GWR. Interestingly, 

the estimation of the kriging parameters taking into account network distances, instead of 

Euclidean, showed no enhanced performance.   

Furthermore, Pulugurtha and Kusam (2012) developed Generalized Estimating Equations 

models to estimate AADT using integrated spatial data from multiple network buffer 

bandwidths. Spatial data included off-network characteristics such as demographic, socio-

economic and land use characteristics, captured over multiple network buffer bandwidths 

around a link and integrated by the employment of distance decreasing weights. The 

methodology was applied on a city level (Charlotte, North Carolina). As a continuation of the 

previous study, Duddu and Pulugurtha (2013) exploited the application of the principle of 

demographic gravitation to estimate AADT based on land-use characteristics on the same 

network. A negative binomial model was estimated along with neural network models. 

Interestingly, the results obtained showed that the developed models gave significantly lower 

errors in comparison to outputs from traditional four-step method used by regional modellers. 

In a recent study by Lowry (2014), a new method for interpolating AADT was presented, 

tailored for communities where attributes such as roadway characteristics, land-use etc., are 

uniform over space, and thus their inclusion in the model bears no explanatory power. The new 

method used novel explanatory variables that are derived through a modified form of stress 

centrality, a network analysis metric that quantifies the topological importance of a link in a 

network. The case study showed high quality results. The same methodology found application 

as well for estimating directional bicycle volumes (McDaniel et al., 2014).  

1.2 Description of the framework of the paper 

The objective of the current research is to develop a direct demand modelling approach for 

prediction of AADT on a nationwide network, a task which has not been addressed sufficiently 

in the existing literature. The particularity of the nationwide network level case stems from the 

inherent incapability of spatial densities of different socioeconomic data to capture the 

interregional demand patterns that occur on the links, since they fail to explain the high volume 

of interregional through traffic. Driven by this and building upon the work of Lowry (2014), 

we have expanded the stress centrality index to align with travel demand modelling aspects. In 

brief, the main advantage of this is that it can facilitate a quantification of the interregional 

demand patterns by associating the network structure with the travel accessibility concept. This 

allows to bring into the modelling formulation a way to capture both the spatial direction and 
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extent along with the trip attraction competition that govern the travel demand, allowing us to 

capture the demand capacity interaction at the core of transport modelling. 

In addition to the already tested models in the literature (ordinary least squares [OLS] model, 

negative binomial model, universal kriging, and GWR), the utilization of the family of spatial 

simultaneous autoregressive (SAR) models (Anselin, 1988a) is tested, in terms of its capability 

to be applied for AADT prediction purposes. The advantage of such models is that they can 

resolve spatial dependence issues, accounting for the spatial correlation, offering a structural 

explanation of the AADT and since their estimated coefficients are unbiased and consistent, 

they can be used for both interpolation and forecasting purposes, an important aspect for both 

policy evaluation and project appraisal purposes.  

In summary, a set of different models is estimated and evaluated in order to draw sound 

conclusions on the newly employed variables and also on SAR models’ capabilities to be 

employed for AADT prediction purposes and thus highlight in a quantifiable way their strengths 

and weaknesses. At last, a comparison of models predictive accuracy to the output of a 

traditional four-step model is conducted to show to what extent such models can constitute a 

trustworthy alternative to more advanced, but definitely more data demanding and 

computationally burdensome, models.  

2. Methodology 

2.1 Centrality indices 

The construction of a new variable capturing the interregional demand patterns, taking into 

account the direction of potential interactions over space, is of central importance for the 

estimation of AADT models on a nationwide network. Making use of network theory, centrality 

is an index that aims to identify the most influential persons in the context of a social network. 

Different centrality indices have been introduced over the years, aiming at the identification 

and the quantification of the importance of a particular person in a social network. In general, 

centrality indices take into account the number of shortest paths that pass by a given link/node, 

either for given pairs of nodes, or for all pair of nodes within the network. In the case where a 

capacity constraint exists in the form of a particular weight/cost associated with each link/node, 

then this weight should be taken into account in the routing algorithm for the identification of 

the shortest paths.  
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Departing from the social sciences questions, centrality indices are meaningful for all networks’ 

analyses. From this viewpoint, centrality indices are meaningful for the analysis of transport 

networks as well and can provide a quantifiable measure of the importance of links, taking into 

account the network structure and the cost of traversing each link (distance or time). In the case 

of transportation, networks correspond to directed networks, given the allowed and prohibited 

turning movements on its vertices (nodes), and are modelled as higher level networks in order 

to account for them. Stress centrality index was introduced by Shimbel (1953) and is defined 

as the number of shortest paths connecting all pairs of nodes of the network that pass via a link.  

Stress centrality𝑒 = ∑ 𝜎𝑖𝑗(𝑒)𝑖,𝑗∈𝑉    (1)     

Where e is any link of the network, V the set of all nodes, 𝜎𝑖𝑗the shortest path from node i to 

node j, and 𝜎𝑖𝑗(𝑒) is equal to one if the link e is part of the shortest path connecting i and j 

nodes.  

By definition, higher hierarchical links have high centrality values, while that might be the case 

as well for lower hierarchical links given the network structure. In the case of transport 

networks, the hierarchy is given by the functional class of the roads whereas their importance 

is normally matched by the number of trips using the given link. Naturally, two issues with 

respect to the application of the stress centrality index for transport networks come to the 

surface. First, the issue of travel demand since not all nodes are attracting or producing the same 

number of trips and thus this should be taken into account in the centrality formulation. Second, 

interaction between nodes tends to diminish and becomes very small as the distance between 

them increases, which should be accounted for in a modified stress centrality formulation.  

Addressing the aforementioned issues takes place in three steps. At first, the issue of trip 

production and attraction is addressed by making the assumption that production is related to 

the economically active population in the vicinity of the origin node, and attraction at the 

employment positions at the destination node. Second, the interaction intensity between the 

nodes should be associated with a function that diminishes by network distance. The distance 

decay function embedded in the measure of travel accessibility is employed for this reason, 

since accessibility is a measure of how far  people are willing, or able, to travel on the course 

of their daily life and quantifies how interaction opportunities decrease over the distance 

(Hansen, 1959). Two variations of distance decay function are tested to identify the one that 

fits the data better (Halás et al., 2014). The parameters of the distance-decay function can be 

either estimated, if data availability allows it, or taken from another study. Last, a restriction 

has to be imposed with respect to the direction of potential interactions by standardizing the 

accessible opportunities from each node to each node, by the total number of opportunities 
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accessible from the origin node. The incorporation of these changes in the stress centrality index 

and the derivation of the constructed index, called accessibility-weighted centrality, is presented 

below. It should be noted that the constructed variable mirrors to a great extent the first two 

steps of the traditional four-step model, however this is inevitable due to the nature of the 

relationships that we need to capture in the variable.  

 

𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦𝑒 = ∑ 𝜎𝑖𝑗(𝑒)   (2)𝑖,𝑗∈𝑉     

𝜎𝑖𝑗(𝑒) = ∑ 𝑃𝑜𝑝𝑢𝑙𝑖
𝐸𝑚𝑝𝑙𝑜𝑦𝑚𝑗∗𝑓(𝑐𝑜𝑠𝑡𝑖𝑗)

𝑇𝑟𝑎𝑣𝑒𝑙 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖
    (3)𝑖,𝑗∈𝑉    

Travel Accessibilityi = ∑ Employmj ∗ f(costij)   (4)
j
i     

𝑓(𝑐𝑜𝑠𝑡𝑖𝑗) = { 𝑒𝛽∗𝑐𝑜𝑠𝑡𝑖𝑗

𝑒𝛽∗𝑐𝑜𝑠𝑡𝑖𝑗
𝑎    (5)     

Where e is any link of the network, V the set of all nodes, 𝜎𝑖𝑗the shortest path from node i to 

node j, and 𝜎𝑖𝑗(𝑒) is equal to the sum total according to formula 3, if the link e is part of the 

shortest path connecting i and j nodes.  

2.2 Modelling approaches 

In order to test the predictive accuracy of models for AADT prediction, the application of 

different models is examined. In particular, the classical  ordinary least square (OLS) model 

constitutes the starting point due to its simplicity, where the dependent variable Y is described 

by a linear function of independent variables X with the parameters β being the least squares 

estimates. One of the main assumptions of the model requires that the error should be spherical, 

meaning that they should be homoscedastic and not auto-correlated.  

𝑌 = 𝛽𝛸 + 𝜀   (6) 

where Y is a vector with N values of the dependent variable, β is a vector with the regression 

coefficients, X is a matrix with the independent variables and ε a vector of error terms.   

However, the application of the OLS estimator for the statistical analysis of spatial data results 

to residuals that are not independent, but spatially correlated, leading to the violation of the 

assumptions of the OLS estimator.  
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Spatial econometrics was popularized by Anselin (1988a) and are defined as the use of 

regression models by accounting for the impact of spatial effects (spatial dependence and 

heterogeneity) in their specification and estimation, avoiding the statistical problems such as 

unreliable statistical tests and biased and inconsistent estimated parameters. This is facilitated 

by the inclusion of a spatial weight matrix (W) in the model specification that incorporates 

information about the extent of the neighborhood, the type of the adjacency, and the relative 

weight that should be assigned on the neighboring locations. In the transport network case, it 

specifies the expected direction and mechanism of influence. 

In the case of the spatial dependence, SAR models can account for it by the inclusion of relevant 

spatial autoregressive components (Kissling and Carl, 2007). In particular, the spatial error 

model assumes that the spatial dependence exists in the error term of the model, and thus the 

spatial autoregressive process is applied to it.  

𝑌 = 𝛽𝛸 + 𝑢   (7) 

with  𝑢 = 𝜆𝑊𝑢 + 𝜀   (8)  

where u the error term, λ the spatial autoregressive coefficient, W a matrix with the contiguity 

structure having dimensions N x N, and ε a vector of independent and identically distributed 

(iid) error terms.   

The spatial lag model assumes that the spatial dependence exists in the response variable and 

applies the spatial autoregressive process to the response variable, treating it as a lagged 

variable. The formulation of the model is: 

𝑌 = 𝜌𝑊𝑌 + 𝛽𝛸 + 𝜀 (9) 

where ρ is the spatial autocorrelation parameter, and WY is the term for the lagged variable. 

On the front of spatial heterogeneity, geographically weighted regression constitutes a 

technique which allows different relationships to exist in space, instead of a global relationship, 

and provides localized estimates of the coefficients (Charlton and Fotheringham, 2009).  

𝑌(𝑧) = 𝛽𝑖(𝑧)𝛸 + 𝑢   (10) 

Where the notation 𝛽𝑖(𝑧) indicates that the parameter describes a relationship around location 

u and is specific to that location (Charlton and Fotheringham, 2009).  

Kriging is a geostatistical technique used for interpolation purposes. In the case of ordinary 

kriging, the assumption is that the unobserved value is decomposed into two terms, the local 
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trend βΧ, and the error terms which are spatially correlated and their variance is assumed to 

follow a semivariogram relation 𝛾(ℎ𝑖𝑗), as a function of the distance h between the points 

(detailed information can be found at Oliver and Webster (1990)). In line with previous studies 

of AADT prediction (e.g. Selby and Kockelman (2013)), three semivariogram functions are 

evaluated: 

Exponential: 𝛾(ℎ𝑖𝑗; 𝑐0, 𝑐𝑒 , 𝑎𝑠) = 𝑐0 + 𝑐𝑒 (1 − 𝑒
−

ℎ𝑖𝑗

𝑎𝑠
2

)   (11)  

Gaussian: 𝛾(ℎ𝑖𝑗; 𝑐0, 𝑐𝑒 , 𝑎𝑠) = 𝑐0 + 𝑐𝑒 (
1.5ℎ𝑖𝑗

𝑎𝑠
− 0.5 (

ℎ𝑖𝑗

𝑎𝑠
)

3

)  (12) 

Spherical: 𝛾(ℎ𝑖𝑗; 𝑐0, 𝑐𝑒 , 𝑎𝑠) = 𝑐0 + 𝑐𝑒 (1 − 𝑒
−

ℎ𝑖𝑗

𝑎𝑠 )  (13)  

Last, the negative binomial regression is widely used along with the Poisson regression, for the 

modelling of count data, accounting properly for their non-negative nature.  

3. Case study 

In order to assess the plausibility of applying a direct demand modelling approach for prediction 

of AADT on a nationwide network, and evaluate the capability of the centrality indices to 

enhance the predictive accuracy of such models, a case study is designed and conducted. More 

specifically, the network of Switzerland is employed as the study network (ARE; National 

Transport Model, 2010), where the Federal Roads Office collects count data at various locations 

of the network and calculates AADT values. As the basis year, the year 2010 is chosen in order 

to be comparable with the output of the latest version of the National Transport Model. In 

particular, for the basis year AADT data on 398 links exist which are used for the model 

estimation as dependent values. A map of the study network along with the spatial distribution 

of the count locations can be seen in Figure 1. 
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Figure 1 Case study network and count locations 

 
 

 

 
Source: ARE, National Transport Model, 2010. 

 

3.1 Centrality indices 

3.1.1 Stress centrality 

The first centrality measure that is of interest for evaluation mainly due to its simplicity, is the 

stress centrality as defined in formula 1. The number of shortest paths connecting all pairs of 

nodes of the network for each link is a variable that can be constructed with a relative ease, 

making use of existing routines (e.g. igraph package for R (Csárdi and Nepusz, 2006)).  

3.1.2 Accessibility-weighted centrality measure 

The construction of the accessibility-weighted centrality measure for the study network is 

conducted according to the previously defined methodology. In particular, the new measure 

includes a distance decay function which serves the purpose of capturing the diminishing 

intensity interactions over distance and two variations of distance decay function are checked 

to identify the one that fits better the data, in line with a previous study (Halás et al., 2014). 
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Obviously, different parameters are associated with different trip purposes; e.g. people are 

willing to travel shorter distances for shopping activities than for commuting to work. In our 

case, the interregional commuting to work trips are the ones contributing to the available AADT 

values the most and thus the estimated parameters should correspond to this trip purpose. 

In order to facilitate the estimation of the parameters of these two functions, we make use of 

the 2010 Microcensus data, where the residential and employment location of the participants 

is reported and subsequently it is matched to a municipal level. The associated travel cost among 

all municipalities is calculated by identifying their shortest paths on the employed weighted 

directed network, both in terms of distance and travel time (free-flow travel time).  

The nonlinear least-squares estimates of the parameters are calculated using the Gauss-Newton 

algorithm. The estimated parameters and the shape of the distance decay functions are presented 

in Figure 2, where the function with the two parameters is found to fit better to the data, for 

both distance and travel time, and thus is the chosen one. Alternatively, these parameters could 

be taken from previous studies as long as the associated cost metric is consistent with the one 

of the case study to avoid giving rise to inconsistencies that can lead to erroneous results. 

The next step is to define the origin and the destination nodes of the network that their shortest 

paths are accounted in the calculation of the centrality measure. Given the interregional 

character of the trips, a convenient choice is to employ a zonal level according to the 

administrative level of municipalities. In this case, a node close to the centroid of each zone 

serves as the origin and destination node for the trips of each zone, associating on it the 

population and the employment positions of each zone. The advantage of that choice is the 

availability of socioeconomic data aggregated on this level while the methodology can be easily 

applied if more disaggregated data (e.g. on a hectar level) exist along with the identification of 

different population and employment clusters, which can then replace the employed zonal 

analysis level. 

Finally, the calculation of the accessibility-weighted centrality value takes place for the subset 

of links with count data, for both metric costs of network distance and travel time. For 

computational reasons, given the finding that zones with distances more than 60 kilometers or 

minutes between them (Figure 2) have an interaction intensity close to zero, we restrict the 

time/distance window  around each link to these values. Essentially that means that only the 

shortest paths among the origins and destinations within a radius of 60 kilometers or 60 minutes 

around each link are found and taken into account. 
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Figure 2 Estimated parameters of the accessibility distance decay functions 

 
 

  

 
 

3.2 Independent variables 

In essence, the regression yields two components; one that captures the impact of supply on 

AADT, and one that captures the impact of demand allowing to model their interaction. On the 

supply side, variables describing the road capacity are put to use. More specifically, the 

functional class of the road and the number of lanes are the chosen explanatory variables. On 

the demand side, a set of variables is tested thoroughly in order to capture to the greatest 

possible extent the demand patterns. These variables correspond to the spatial densities of 

socioeconomic variables for various radii, stress centrality indices and the constructed 

accessibility-weighted centrality measure. Additional spatial variation is added on the demand 

side by the inclusion of the public transport network density in the vicinity of each road (density 

of public transport stops within 5 km radius), as indicative of the intensity of local activities, 

and thus of local demand. The summary statistics of the included variables are presented in 

Table 1. As it can been, in conjunction with the box-plot in Figure 3, the newly constructed 

variable has a similar magnitude as the AADT while their correlation is close to 0.75, providing 

evidence that the new variable has the capability of reproducing satisfyingly the variation of 

demand over space.  
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Table 1 Summary statistics of variables 

Variables Unit Mean  Median St. Dev. 

AADT (before transformation) Vehicles 14370 8668 14146 

Freeway - Highway Dummy 184 - - 

Major road Dummy 136 - - 

Rural major road Dummy 78 - - 

One-lane road Dummy 231 - - 

Two-lane road Dummy 147 - - 

Three-lane road Dummy 20 - - 

Population density (kernel 

weighted): 10 km Residents/ sq. km 571 327 626 

Population density (kernel 

weighted): 20 km Residents/ sq. km 369 303 323 

Stress centrality Importance 8.30*106   2.21*106 13.17*106 

Accessibility-weighted centrality 

Accessible empl. 

opportunities 22350 9646 28651 

Public transp. density: 5km 

radius Stops/ sq. km 1.33 0.89 1.28 

3.3 AADT transformation 

The particularity of using count data as the dependent variable in the context of linear regression 

models, stems from their non-negative character which can lead to a number of shortcomings 

(Winkelmann, 2008). In this case, models accounting for it should be employed such as Poisson 

or negative binomial regression models, or the dependent variable should be transformed to 

conform to the assumptions of normality and/ or homoscedasticity of variance (Osborne, 2010). 

Based on that, the Box-Cox transformation (Box and Cox 1964) is applied on the AADT data 

in order to allow the estimation of linear regression models. The transformation form is 

presented below while the identified ξ value for the AADT data is found to be equal to 0.222.  

𝑌𝑡𝑟 = {
𝑌𝜉 − 1

𝜆
, 𝜉 ≠ 0

𝑙𝑛𝑌, 𝜉 = 0

   (14) 
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Given the high correlation of the centrality variable with the AADT, we choose to apply an 

identical Box-Cox transformation to it in order to maintain their strong linear relation in the 

model. The histogram of the AADT values before the transformation is presented in Figure 3 

(left side), while on the right side the box-plot of the transformed centrality quantiles are plotted 

against the transformed AADT values to show their strong linear correlation. 

Figure 3 Histogram of AADT and box-plot of accessibility-weighted centrality quantiles 

with respect to AADT 

 
 

 

 
 

It should be noted that the involved data processing, models estimation, and network processing 

are undertaken with the statistical programming language R (R Development core team, 2011), 

making use of different available packages (igraph (Csárdi and Nepusz, 2006); spdep (Bivand 

et al., 2005); gstat (Pebesma, 2004)). 

4. Model estimation - Results 

In this section, a set of different models is estimated and evaluated in order to draw safe 

conclusions on both the newly constructed variable and also on models’ capabilities. In addition 

to models already tested in the literature, the family of spatial simultaneous autoregressive 

(SAR) models is tested as well. An assessment of models predictive accuracy and comparison 

to the output of a traditional four-step model is conducted to show to what extent such models 

can constitute a trustworthy alternative. 
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Three variations of OLS models are estimated serving a twofold purpose. At first, to examine 

the ability of different sets of variables to capture long-distance trips that occur on a nationwide 

network within a direct demand model formulation and thus draw conclusions concerning this 

aspect. The particularity of the long-distance trips is that spatial density variables fail to capture 

due to their inherent incapability to take into account the directionality and the mechanism that 

governs the demand. More specifically, the first model includes the spatial density of population 

in a 20 kilometres radius to resemble the travel demand patterns in a medium scale. The second 

model, includes in addition the stress centrality variable where the importance of the links is 

quantified. Last, in the third OLS model the aforementioned variables are replaced with the 

accessibility weighted centrality variable which simultaneously quantifies both the network 

structure and the directionality and magnitude of travel demand. Furthermore, the spatial 

density of population in a shorter radius than before (10 kilometres) is included as well to 

capture more localized demand patterns that the constructed variable fails to capture 

sufficiently.   

Secondly, to serve as the comparison benchmark and also for examining the existence of spatial 

autocorrelation in the residuals and thus justify if the need for the estimation of spatial 

regression models arises. The spatial autocorrelation is calculated in terms of the Moran’s I 

measure which shows that there is statistically significant autocorrelation of 0.21. The 

implication of this, as mentioned before, is that the estimates are biased and inconsistent since 

more (or less) explanatory power is attributed to them than it should. The estimated coefficients 

for the different OLS models are presented in Table 2. In addition, the models have been tested 

for heteroscedasticity by making use of the appropriate tests (Breusch and Pagan, 1979; 

Goldfeld and Quandt, 1965) and no strong indication of it was found. 

In summary, the OLS coefficients of the functional class variables have the expected order of 

magnitude, while the impact of the number of lanes and the functional class is in line with 

expectations. The demand relevant variables, have positive impact and they are statistically 

significant. It should be mentioned that they centrality value with the distance decay function 

as a relationship of the travel time distance is found to be slightly more statistically significant, 

and thus the one employed. The OLS model with the accessibility-weighted centrality variable 

has the highest fit among the models, in terms of adjusted R-squared and Akaike Information 

Criterion. 
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Table 2 Estimated coefficients for the different OLS models 

  OLS OLS stress centr. OLS acc.weighted 

Indep. Variables Estimate Sign. Estimate Sign. Estimate Sign. 

Intercept 21.35 *** 8.97 *** 13.83 *** 

Major road -5.24 *** -3.37 *** -3.657 *** 

Rural major road -6.59 *** -4.44 *** -4.55 *** 

Two-lane road 5.81 *** 4.93 *** 3.719 *** 

Three-lane road 10.88 *** 8.97 *** 6.917 *** 

Ln Population density: 10 km -  -  1.65 *** 

Ln Population density: 20 km 1.71 *** 1.27 *** -  

Ln Public transp. density: 5km 1.23 *** 1.81 *** -  

Acc.weighted centrality (box-

cox) -  -  
0.233 

*** 

Ln Stress centrality -   0.98 *** -   

Adjusted R  0.839   0.857   0.875   

Akaike Inf. criterion  2108  2061  2006  

Moran's I (network distance) 0.13 *** 0.19 *** 0.2 *** 

No. of observations 398 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1         

Based on the Moran’s I measure results, the estimation of spatial error and lag models 

necessitates in order to account for the autocorrelation issues. Driven by this, three spatial 

weight matrices are constructed based on Euclidean distance, and network cost, both in terms 

of time and distance, in order to evaluate the direction that correlation occurs. The identification 

of the spatial extent of autocorrelation in the OLS residuals is used as an indicator to define the 

extent of the neighborhood. In particular, for the Euclidean and the network distance, the 

Moran’s I measure exhibits that the autocorrelation exists up to a radius of 20 and 30 kilometers 

respectively. In the case of network time, the autocorrelation remains significant up to a radius 

of 25 minutes of free-flow travel time. The last part of the construction of the spatial weight 

matrices is to determine the weight that should be assigned to each neighboring location. Based 

on the Moran’s I measure, we conclude that the inverse distance metric along with a 

normalization of the sum of the weights of the neighboring locations to one, is the more 

appropriate to capture the spatial structure. Making use of the robust form of the Lagrange 

Multiplier diagnostics for spatial dependence (Anselin, 1988b), we conclude that the spatial 

dependence exists in the error term, hence the spatial error model is the appropriate model. 

Nevertheless, the spatial lag model is evaluated as well to test its predictive accuracy. The 

estimated coefficients for the spatial regression models are presented in Table 3.  

 



16th Swiss Transport Research Conference                                                                                                 May 18-20, 2016 

 ______________________________________________________________________________________________  

16 

 

Table 3 Estimated coefficients for SAR models 

  Sp. Error netw. dist. Sp. Lag netw. dist. 

Indep. Variables Estimate Sign. Estimate Sign. 

Intercept 14.10 *** 12.28 *** 

Major road -3.68 *** -3.71 *** 

Rural major road -4.73 *** -4.45 *** 

Two-lane road 3.06 *** 3.50 *** 

Three-lane road 5.98 *** 6.74 *** 

Ln Population density: 10 km 1.50 *** 1.34 *** 

Acc.weighted centrality (box-

cox) 0.27 *** 0.23 *** 

lamda  0.51 *** -   

rho -   0.11 ** 

Akaike Inf. criterion  1963  2000  

Moran's I measure 0.01   0.15 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

The same patterns as in the OLS model can be observed in the estimated coefficients of the 

spatial models, with the spatial autoregressive and autocorrelation parameters found to be 

statistically significant. In terms of goodness-of-fit measures, the Akaike information criterion 

shows that the spatial error model outperforms both the OLS and the spatial lag model. 

The next model estimated corresponds to the GWR, which aims to resolve spatial heterogeneity 

issues and it is calculated by taking into account an adaptive bandwidth. The corresponding 

results are presented in Table 4. 

Table 4 Estimated coefficients for GWR model 

Indep. Variables Min. 1st Quantile Median 3rd Quantile Max. 

Intercept -1.04 9.26 12.51 15.22 30.46 

Major road -11.02 -5.57 -3.84 -1.88 3.77 

Rural major road -14.95 -7.29 -4.32 -1.93 3.44 

Two-lane road -3.25 0.37 2.90 5.07 9.68 

Three-lane road -0.65 2.31 5.21 9.89 15.42 

Ln Population density: 10 km -0.51 1.22 1.70 2.12 3.09 

Acc.weighted centrality (box-

cox) 0.06 0.23 0.29 0.35 0.56 

Local R square 0.748 0.891 0.929 0.941 0.9725 

Interestingly, the statistics of the constructed centrality variable’s coefficient show that it has 

relatively low variation over space, providing further evidence on its ability to approximate 

interregional demand patterns.  
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The negative binomial regression results are not reported, but the estimates exhibit the same 

patterns as in the OLS model. In this particular case, the untransformed AADT and centrality 

variables are employed. 

4.1 Evaluation of predictive accuracy of models 

The developed models are evaluated in terms of their predictive accuracy, both for in-sample 

and out-of-sample. For the out-of-sample, an 80% share of the count locations are randomly 

chosen and used for the estimation of the model while the remaining 20% is used for the 

validation part. Given the relatively low number of observations, the out-of-sample predictive 

accuracy of the model exhibits variation. In order to account for it, a number of 100 replications 

is performed to draw safe conclusions and the corresponding mean values are reported.  

The following five accuracy measures are calculated in order to allow the evaluation to take 

place. Mean percentage error (MPE) and mean absolute percentage error (MAPE) are easily 

interpretable measures, having the main disadvantage though that they are influenced by 

outliers.  Symmetric mean absolute percentage error (SMAPE) is a similar measure which has 

the advantage that it corrects for outlier’s influence. Median absolute percentage error 

(MdAPE) has the advantage that it is not influenced by outliers and can provide an overview of 

the distribution of the errors in conjunction with MPE. Mean squared error (MSE) because of 

the quadratic term is influenced heavily by the outliers. An overview of the employed accuracy 

measures is given by Makridakis and Hibon (1995), where they conclude that for forecasting 

purposes MSE and SMAPE are the preferable measures. It should be noted that AADT 

predicted values are back-transformed before the calculation of the measures. The formulas of 

the accuracy measures are given below with 𝑌�̂� the predicted value, while the results are reported 

in Table 5.  

𝑀𝑃𝐸 =
1

𝑛
∑

𝑌�̂� − 𝑌𝑖

𝑌𝑖

𝑛

𝑖=1

∗ 100   (15) 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑌�̂� − 𝑌𝑖

𝑌𝑖
|

𝑛

𝑖=1

∗ 100   (16) 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑌𝑖 − 𝑌�̂�

𝑌𝑖 + 𝑌�̂�

2

|

𝑛

𝑖=1

∗ 100   (17) 
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𝑀𝑑𝐴𝑃𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛 (|
𝑌�̂� − 𝑌𝑖

𝑌𝑖
| ∗ 100)   (18) 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌�̂�)

2

𝑛

𝑖=1

   (19) 

A comparison of the accuracy measures reveals similar patterns for both in-sample and out-of-

sample. In particular, among the variations of SAR models, the ones that employ a spatial 

matrix based on network distances metrics yield slightly better results, highlighting the 

importance of using network over Euclidean distances. Among the kriging models, all of them 

yield similar results although it can be concluded that the one with the spherical semivariogram 

has slightly better accuracy.  

The negative binomial model yields the results with lower predictive accuracy, providing 

support to the argument of the necessity of transforming the dependent variable that does not 

conform to the assumptions of normality.  

Among the estimated models, GWR has the highest in-sample and out-of-sample accuracy. In 

terms of SMAPE, all models besides negative binomial regression yield similar out-of-sample 

results. Moreover, taking into account the fact that GWR and kriging models are aimed for 

interpolation purposes, it can be concluded that the spatial error model gives similar results, 

while having the advantage that it can be applied for forecasting purposes since its parameters 

are unbiased and consistent. Interestingly, OLS out-of-sample accuracy is slightly better than 

spatial error model, which is not the case in-sample. 

A comparison with the Swiss national model’s, which corresponds to the state-of-practice four-

step model used for AADT estimation, exhibits that the national model outperforms the 

estimated direct demand models in terms of predictive accuracy. In summary, national transport 

model has higher accuracy than the other models but at the same it has to be pointed out that it 

has been calibrated against the count data and it requires much more data and complicated 

models. In addition, a potential source of introduced bias might have resulted from not 

accounting for international commuters which can lead to underestimation of AADT close to 

the borders, an aspect which is taken into account in the national model.  
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Table 5 In-sample and out-of-sample predictive accuracy of estimated models 

  Model MdAPE MPE MAPE MSE SMAPE 

In
-s

a
m

p
le

 p
re

d
ic

ti
v

e 
a

cc
u

ra
cy

  
OLS 27.62 16.02 43.41 4.19E+07 0.088 

OLS stress centr. 24.73 14.11 39.51 3.57E+07 0.082 

OLS acc. weighted 24.08 11.79 35.88 3.43E+07 0.076 

Negative binomial 26.89 23.48 44.57 5.10E+07 0.084 

Sp. error: Eucl. distance 21.39 11.41 34.56 2.95E+07 0.073 

Sp. error: Netw. distance 20.38 10.57 33.04 2.72E+07 0.070 

Sp. error: Netw. fftt 20.43 10.63 33.28 2.75E+07 0.070 

Sp. lag: Netw. distance 21.29 11.51 35.21 3.30E+07 0.075 

GWR 16.92 7.43 25.65 1.85E+07 0.056 

National model (4-step) 4.78 5.73 14.65 3.85E+06 0.031 

O
u

t-
o
f-

sa
m

p
le

 p
re

d
ic

ti
v
e 

a
cc

u
ra

cy
  

OLS 28.50 15.98 44.07 4.53E+07 0.090 

OLS stress centr. 25.88 13.99 40.34 3.83E+07 0.084 

OLS acc. weighted 25.95 13.26 39.31 3.81E+07 0.082 

Negative binomial 27.05 23.89 45.62 4.46E+07 0.086 

Sp. error: Eucl. distance 25.41 13.67 39.31 3.79E+07 0.082 

Sp. error: Netw. distance 25.60 13.76 39.28 3.79E+07 0.082 

Sp. error: Netw. fftt 25.55 13.35 39.16 3.79E+07 0.082 

Sp. lag  Netw. distance 26.34 13.40 39.60 3.83E+07 0.083 

Kriging: Spherical 25.34 12.84 38.24 3.56E+07 0.080 

Kriging: Gaussian 25.47 12.86 38.26 3.56E+07 0.080 

Kriging: Exponential 25.95 13.26 39.31 3.81E+07 0.082 

GWR 25.52 9.68 36.86 3.60E+07 0.080 

National model (4-step) 4.82 5.84 14.39 3.66E+06 0.030 

Attempting a comparison with the results of a similar scale study (Selby and Kockelman, 2013) 

where kriging models were estimated and the MAPE was calculated to be close to 60%. The 

difference in the magnitude of the accuracy can be attributed to a great extent to the inclusion 

of the centrality measures. In the case of the study conducted by Lowry for a community 

network though, the reported MdAPE values of 28%, are slightly larger but of similar 

magnitude with our results. 

5. Conclusions 

In the present paper a direct demand modelling approach for AADT prediction on a nationwide 

network is presented. It is exhibited that the inclusion of network theory-based variables in the 

model formulation can lead to a significant enhancement on the predictive accuracy. In 

addition, a methodology for expanding the stress centrality index to align with travel demand 
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modelling aspects is presented and evaluated, providing some concrete evidence in favour of 

it. 

In addition to the already tested models in the literature, it is shown that while GWR has the 

highest predictive accuracy its underlying assumptions make it more appropriate for 

interpolation purposes. In contrast, spatial error and OLS models have the potential to be 

applied for forecasting purposes as well since they are estimated parameters are unbiased and 

consistent. Given this consideration, spatial error model and OLS can be used within a structural 

equation framework to make statements about the speed and the AADT on a link level, 

accounting for both their well-known interdependencies and the spatial autocorrelation (Sarlas 

and Axhausen, 2015a). These two constitute the minimum requirements for the transport project 

appraisal. 

At last, a comparison of models predictive accuracy to the output of a traditional four-step 

model is conducted to show that direct demand models can constitute a trustworthy alternative 

to more advanced, but definitely more data demanding and computationally burdensome 

models. Conceptually, it is arguable that a simplified approach cannot exhibit the predictive 

accuracy and the sensitivity of the existing approaches (four-step or agent-based models). 

However, the higher sensitivity might allow to address more issues, but then raises the issue if 

the forecast is better, as there are more independent variables to forecast/fix. Furthermore,  it 

cannot be overlooked that when it comes to the appraisal of public transport projects, as 

Flyvbjerg et al. (Flyvbjerg et al., 2005) argue, the quality of the demand forecasts has not been 

improved over the years even though more complex and advanced models have been employed.  

The developed methodology can be easily applied to different scales of network, where a finer 

zonal analysis level and the identification of clusters of trip production and attraction can be 

used. Moreover, it requires only publicly available socioeconomic data and can utilize different 

available networks (e.g. Open street map).  
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