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Abstract

The spatial correlation of urban traffic congestion allows the development of clustering algo-
rithms to divide heterogeneous networks into relatively homogeneous and spatially connected
sub-regions. Specifically, by knowing the distribution of congestion over the network and com-
bining monitoring techniques with control theory, recent developments are capable of designing
real-time hierarchical traffic control schemes to protect regions with high level of congestion.
The modeling tool to advance this work is the network macroscopic fundamental diagram
(MFD). The concept of MFD specifies the aggregated traffic state in a region (i.e. linking the
average space-mean flow with accumulation) and it has been incorporated as a model in different
control approaches, mainly perimeter or boundary control. Since these approaches control the
transfer flows on the boundaries, homogeneous and compact areas with smooth boundaries ease
the applicability and efficiency of control. In this paper, we model the clustering problem as a
mixed-integer linear optimization, taking into account contiguity and size constraints for the
clusters. The objective function comprises a weighted average of two terms representing het-
erogeneity and non-compactness of the clusters. The weights are defined by the user according
to the desired relative importance of the homogeneity to the compactness. The homogeneity is
calculated as the sum of all squared differences of the link densities within a cluster from the
approximate mean of that cluster. Compactness is attained by minimizing the sum of all spatial
distances for the links in each cluster to the center of that cluster. The preliminary results of the
proposed clustering framework in a simulated network show the flexibility to make a trade-off

between compactness and homogeneity in different clusters.
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1 Introduction

Traffic congestion in urban networks appear in different regions with different shapes and might
propagate in particular directions varying from day to day. There is a strong effort in the last
decades for traffic flow models in one-dimensional traffic systems (see (Helbing, 2001) for an
overview). Nevertheless, literature in network level dynamics and congestion propagation is
limited and has been mainly built on micro-simulations of link-level traffic dynamics. Due
to unpredictability of travel behaviours, accurate physical modeling remains still challenging
and simulation results may not be realistic for dynamic systems with stochastic characteristics.
Recently, it has been observed with simulated and empirical data in (Geroliminis and Daganzo,

2008), (Buisson and Ladier, 2009), and (Gayah and Daganzo, 2011) that a low scatter unimodal
relationship exists between space-mean flow and density in networks with homogeneous traffic
conditions. Spatial heterogeneity in the distribution of congestion can significantly influence the
shape and the scatter in MFD curves (Geroliminis and Sun, 2011) and (Saberi et al., 2014). The
spatial correlations of urban traffic congestion allows the development of clustering algorithms to
divide heterogeneous urban networks into homogeneous regions (see (Ji and Geroliminis, 2012),
(Saeedmanesh and Geroliminis, 2016a)). Specifically, by knowing the distribution of congestion
over the network, we are capable of designing real-time hierarchical traffic control schemes (e.g.
perimeter control, gating, etc.) to improve the mobility and avoid gridlock conditions in regions
with high level of congestion (Kouvelas et al., 2015) and (Keyvan-Ekbatani et al., 2012). Note
that, MFD has been utilized as a key tool for modeling in these studies. A detailed literature
review of network modeling and control can be found for example in (Haddad et al., 2013) and
(Mahmassani et al., 2013).

The problem of partitioning the heterogeneous network into spatially connected and homoge-
neous regions is considered as a particular case of clustering which is known as contiguity-
constrained clustering. There are several methods introduced to deal with this problem which
can be divided into two main groups according to their strategies to maintain connectivity
for obtained clusters. In one hand there are conventional clustering methods which implicitly
fulfill the connectivity by incorporating spatial information into the classification data. The
method presented in (Ji and Geroliminis, 2012) indirectly imposes connectivity by assuming
similarity only between neighboring roads. However, in non-grid networks, this method tends
to partition from the locations where network has low connectivity regardless of the level of
congestion. Moreover, the method requires a connected graph of the network and missing values
or malfunctioning detectors might create difficulties in application of the method. The proposed
‘Snake’ method in (Saeedmanesh and Geroliminis, 2016a) tries to overcome the aforementioned
difficulty and develops a clustering methodology that is able to find directional congestion within
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a cluster and has good performance for networks with low connectivity. The proposed method in
(Saeedmanesh and Geroliminis, 2016a) utilizes the symmetric non-negative Matrix Factorization
to find clusters from similarity matrix obtained by running different snakes in the network. In
the other hand, there are two categories of methods that explicitly impose the connectivity: (i)
heuristic approaches; (ii) exact optimization models. The heuristic approaches are effectively
utilized in cases where we have to aggregate high number of roads in big urban networks.
Different types of agglomerative hierarchical clustering methods proposed in (Guo, 2008) are
examples of heuristic methods. At the beginning of these algorithms, each road is considered
as one cluster and a tree is derived by merging two clusters that contains adjacent roads. Then,
clusters are obtained by cutting one edge from the tree until reaching predefined number of
regions. A main challenge in heuristic algorithms is to avoid local optimal solutions, which
motivated researches to develop exact models for contiguity constrained clustering problem. We
refer the reader to (Carlos et al., 2007) for more detailed overview about existing methods.

In this study, we formulate the clustering problem as a mixed-integer linear programming
(MILP), taking into account contiguity and size constraints for the clusters. The objective of the
optimization is to maximize the weighted average of the homogeneity and compactness of the
clusters. In fact, compact areas with smooth boundaries ease the applicability and efficiency
of control as these approaches control the transfer flows on the boundaries. The weights in
the objective function are defined by the user according to the desired relative importance of
the homogeneity to the compactness. The proposed clustering framework can be applied in
heterogeneous large-scale real networks and has the flexibility to make a trade-off between
compactness and homogeneity in different clusters. Note that, the current formulation has some
advantages compared to the formulation presented in (Saeedmanesh and Geroliminis, 2016b)
by the same authors: (i) contiguity is modeled in such a way that needs much less decision
variables which reduces the computational complexity; (ii) the compactness is defined in a more
precise way using the new formulation (i.e. the shortest path inside each cluster is considered
rather than the shortest path in the entire network); (iii) compactness is directly written as a
linear function of decision variables while in Saeedmanesh and Geroliminis (2016b) the initial
quadratic compactness function is approximated by linear functions using upper and lower
bounds.

The remainder of this paper is organized as follows: In Section 2, we introduce the proposed
optimization model for partitioning problem and derive a MILP formulation. Moreover, model-
ing different objectives (compactness, homogeneity) and constraints (contiguity, size, etc.) are
explained in details. The Section 3 presents the partitioning results with different number of
partitions. Different objective weights are presented and compared for a grid-type medium size
network (San Francisco with about 400 links). The paper concludes with a discussion about the
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results and ideas for further research.

2 Methodological framework

Consider an urban network with uneven and inconsistent distribution of congestion, which
occurs frequently over a day in real networks with high travel demand. The main objective is to
partition such a network with a large number of roads into connected, homogeneous and spatially
compact sub-regions. An ideal sub-region is a relatively homogeneous area characterized by a
set of following properties: (i) spatial connectivity (i.e. roads inside each cluster are connected
to each other) which facilitates effective traffic management strategies such as perimeter control
and gating; (ii) spatial compactness is an important aspect of clustering as very weird shapes
might make perimeter control inefficient. Given that drivers tend to choose routes without too
many turns, a non-smooth boundary where perimeter control is applied might create shortest
paths with a large number of turns and change the behavior of drivers in non-predictable ways;
(iii) certain minimum number of links that each cluster should contain. Regions with a few
number of roads (e.g. a single road in an extreme case) have high scatter MFDs which creates
difficulties for multi-region control strategies (like perimeter control ad gating). These control
strategies assume a well-defined low-scatter relation between the production and accumulation
for each region.

Indeed, homogeneity and compactness criteria are two conflicting objectives that need to be
taken into account at the same time. Hence, the optimization problem is formulated with
an objective of maximizing a weighted sum of homogeneity and compactness for different
clusters. Note that, these weights represent the importance of each two objectives and can be
defined by the user. The connectivity in each cluster is explicitly imposed by constraints. This
type of partitioning is known as ‘Contiguity-constrained clustering’ in the literature. In the
following sections (Section 2.1, Section 2.2), we explain in details the metrics used to quantify
homogeneity and compactness.

2.1 Homogeneity metric

A well-established index to quantify the heterogeneity is the normalized total variance (TVn)
of different clusters presented in Eq. (1), which considers both cluster size and data variation
within the clusters. This formula is mainly utilized to make an a posteriori evaluation on the
partitioning results once the clusters are determined. However, it is not straightforward to use
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it as an objective function in the optimization process since the average values of the clusters
are not known in advance and vary by any changes in clusters. This creates non-linearity and
non-convexity that unease classical approaches for solving linear or convex problems.

TVn =

Nc∑
i=1

N∑
j=1

xi j × (d j −

N∑
k=1

xik×dk

N∑
k=1

xik

)2

N∑
j=1

(d j −

N∑
k=1

dk

N )2

(1)

where xi j is a binary variable indicating if link j belongs to cluster i or not and d j is the data
representing the traffic condition in link j. Note that, N and Nc are numbers of links and desired
clusters respectively. However, this metric is a nonlinear non-convex function of decision
variables xi js that unease classical convex optimization formulations.

Hence, we try to find an approximation for TVn metric that facilitates the optimization process.
To do so, we give the algorithm a bunch of candidate values for clusters’ mean values and let
the algorithm chooses proper values among them during the optimization process. In fact, we
try to replace the second term in the numerator of Eq. 1 by some predefined candidate values.
It is necessary to find a smart way to determine limited number of values (in the range of one
dozen) representing approximate cluster mean values. Indeed, the values depend on the traffic
data (density, speed, occupancy, etc.), number of desired clusters, and the spatial distribution of
congestion along the network; however, we can have a proper approximation by only considering
the data distribution as congestion is spatially correlated in the network. In this study, given
the number of candidate values Ns, we divide the data into Ns quantile classes and compute the
mean value of the data between two consecutive quantiles and use it as a candidate value. Fig. 1
depicts the case where the data of a simulated case study (described later in details) is divided
into eight quantiles and histogram of the data is schematically presented for one of the quantiles.
Mean of the data in each quantile is calculated and utilized as a candidate value for the mean of
the cluster. Therefore, we have as many candidate points as the number of quantile classes. It
is clear that with this method, more candidate points will be picked from parts of the domain
with high probability density values which is consistent with the two following facts: (i) more
precision is needed for the parts of the domain with large amount of data; (ii) multiple clusters
might exist with close average values in different locations as we have too many links within the
same range.
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Figure 1: Empirical Cumulative Distribution Function of the link densities divided into eight
quantiles
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2.2 Compactness metric

To introduce a measure of non-compactness for clusters, we utilize the graph representation
of the network. Based on the network structure, a graph G = (V, E) is built in which V and E
are sets of nodes and edges respectively. Each road in the network is represented by a node
u ∈ V in a graph and a value of traffic parameter is assigned to that node (i.e. density, speed,
etc.). There is an edge between roads, which are connected to each other. Two links are spatially
connected if they have a common intersection. Since essentially traffic congestion propagates
from the adjacent roads in the network, we opt for the shortest path distance between the roads
rather than the Euclidean distance. It should be noted that there is a clear difference between
compactness and connectivity of the clusters in the terminology of graph theory. A sub-graph
is called connected when there exists a path between each pair of nodes through the existing
edges. To best our knowledge, there is no unique definition for compactness. A good measure of
compactness can be defined as the total distance (TD) of all the roads to the center of their own
clusters. Note that center of a cluster is a node or set of nodes with minimum average distance
to all the nodes in that cluster. Centers of the clusters are specified by the algorithm within the
optimization framework from the whole set of nodes.

2.3 Problem formulation

We first define the sets and indices used to describe the model as well as the variables and
parameters; then, detailed mathematical optimization formulations are presented.
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Table 1: Decision variables and parameters of MILP

Decision variables

y j Distance of node ‘ j’ to the center of its cluster
xi jk Binary variable indicating if node k is connected to the center of cluster ‘i’ via

its neighboring node j or not
xio j Binary variable indicating if node j is selected as a center of cluster ‘i’ or not

Parameters and sets

L Set of nodes in the graph (roads in the network)
µ̄i ith candidate cluster mean value
N( j) Set of neighboring links of link j

N,Ns Number of links and candidate mean values respectively
Nc Desired number of clusters
Nmin Minimum number of links in selected clusters(minimum size)

min
xi jk ,y j

α ×
( Ns∑

i=1

N∑
j=1

∑
k∈N( j)

xik j × (d j − µ̄i)2
)

+ (1 − α) ×
N∑

j=1

y j (2)

Ns∑
i=1

∑
m∈N( j)

xim j = 1 ∀ j ∈ L (3)

xi jk ≤ xio j +
∑

m∈N( j),m,k

xim j ∀i = {1, . . . ,Ns},∀ j ∈ L,∀k ∈ N( j) (4)

yk ≥ y j −

(
(1 −

Ns∑
i=1

xi jk) × N
)

+ 1 ∀k ∈ L, j ∈ N(k) (5)

Ns∑
i=1

N∑
j=1

xio j = Nc (6)
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N∑
j=1

xio j ≤ 1 (7)

Nmin × (
N∑

j=1

xio j) ≤
N∑

j=1

∑
m∈N( j)

xim j (8)

xi jk ∈ {0, 1} 0 ≤ y j ≤ N (9)

The objective function expressed in Eq. (2), includes both measures of heterogeneity and non-
compactness with weights α and 1 − α respectively. As you can see, the objective function
is linear in terms of decision variables xik j and y j. The most challenging part is to model
connectivity in graphs and enforce clusters to be connected. Given a connected sub-graph with n

nodes and an arbitrary node j in that set, we can always find at least one ordered tree connecting
all the nodes in that sub-graph with j as its root node. All the nodes in the graph are connected
to the center of cluster (root node) through a sequence of neighboring nodes. Variable xim j

indicates whether link j is connected to the center of cluster i through its neighboring link m or
not. Note that, ximk = 1 also implies that nodes m and j both belong to cluster i. In this case,
node m is considered as a parent node for child node j. Constraint (3) enforces that each node
only belongs to one cluster and it has one and only one parent node. Constraint (4) establishes
that node k can be connected through link j to the center only if link j is already connected to
the center. Decision variable y j can be interpreted as the level of node j which represents how
far that node is from the center. Apparently, for each node, this value depends on its path to the
center. Constraints (5) insures that the level of a child node should be at least one unit bigger
than its parent. Therefore, y j represent the graph distance (i.e. number of edges in the obtained
ordered tree) between node j and the center of its cluster. Since number of candidate points
Ns exceeds number of desired clusters Nc, we enforce to have as many center nodes as Nc in
constraints (6)- (7). Constraints (8) enforce the size of the clusters to be bigger than or equal to
a predefined value Nmin.
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Figure 2: (a) The test site of San-Francisco (b) Grey-scale representation of link densities in the
test site of San-Francisco.

(a) (b)

3 Case study and priliminary results

3.1 Network Description

The case study is a 2.5 square mile area of Downtown San Francisco (Financial District and
South of Market Area), including about 100 intersections with link lengths varying from 400 to
1300 ft. The number of lanes for through traffic varies from 2 to 5 lanes and the free flow speed
is 30 miles per hour. Traffic signals are all multiphase fixed-time operating on a common cycle
length of 100 s for the west boundary of the area (The Embarcadero) and 60 s for the rest. A 4hr
time-dependent traffic demand (120 time intervals of 2 min) is applied to this network, which
produces different spatial and temporal levels of congestion. We select a time at which there is a
high range of average density values and sub-regions with different level of congestions could
be easily seen in different locations. Furthermore, directional congestion could be observed in
some parts of network with bidirectional roads so we are able to investigate the ability of dealing
with directional congestion. Fig. 2a and 2b illustrate the network and level of congestion in a
certain time in a gray scale format. Note that arc represents different direction in 2 way roads.
In Fig. 2b, it could be easily seen that the network is heterogeneous with different levels of
congestion. Moreover, there are some bi-directional roads with only one congested direction,
which will facilitate to test the performance of model for detecting directional congestion.
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Table 2: Heterogeneity and non-compactness measure for different clustering results (2-4 clus-
ters)

Number of clusters/weight TVn TD

Two clusters
α = 1 0.1700 3129
α = 0 0.9803 1671

Three clusters
α = 1 0.1452 3817
α = 0 0.9519 1331

Four clusters
α = 1 0.1440 2601
α = 0 0.9455 1187

3.2 Partitioning results

In this part, the proposed clustering framework is applied in the part of San-Francisco network.
To obtain candidate mean values, the data is divided into eight quantiles using the approach
explained above. Efficiency of the partitioning algorithm has been tested for the cases with 2, 3
and 4 clusters. For each of these two cases, the algorithm runs two times considering different
weights (α = 0, 1) in the objective function. The results of the clustering for different cases are
depicted in Fig. 3 and measures of both heterogeneity and non-compactness are calculated and
presented in Table 2 for different cases. Figures(3.a, 3.b, 3.c) are corresponding to the case
where weight α = 0 and we only care about maximizing compactness while Fig.(3.d, 3.e, 3.f)
depict the other extreme case where we minimize the heterogeneity in the clusters. By comparing
theses results, we can easily conclude that enforcing connectivity is not a sufficient condition for
having clusters with compact shape and smooth boundaries. Hence it is necessary to incorporate
compactness index in the objective function. As you could see from the obtained values in Table
2, by increasing the weight α from 0 to 1, homogeneity increases while compactness decreases;
bold numbers show the best achieved homogeneity and compactness (i.e. minimum TVn and TD
respectively) for different cases with fixed desired number of clusters.

4 Conclusion and future works

This paper presents a method to partition urban traffic networks using link information and
network structure. The significance of the proposed method is that, it allows the user to make a
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Figure 3: Clustering results for 2, 3 and 4 clusters with α = 0 (a-c) and α = 1 (d-f).

(a) (b) (c)

(d) (e) (f)

trade-off between compactness and homogeneity of the clusters which are usually conflicting
objectives. Moreover, it explicitly imposes the connectivity, which makes the application of
control strategies feasible. The proposed method has been applied to the part of the network of
San Francisco with two different weight values defining the importance ratio of compactness to
homogeneity. The results indicate the big difference between connectivity and compactness and
the necessity of considering compactness in the optimization framework to have clusters with
smoother boundaries. The proposed method can be utilized in perimeter control which works
based on the concept of MFDs to improve network performance since homogeneous clusters
have low scatter MFDs. Future investigation is needed in the following directions: (i) the way of
defining weights which can be done by running optimization framework for more combination
of weights and obtaining Pareto frontier; (ii) the way to have a more accurate estimation of
candidate average values for the clusters. As a future work, it would be challenging to extend
the framework from static to dynamic partitioning by integrating time in the optimization
framework.
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