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Abstract

Discrete choice models are the state-of-the-art for the mathematical modeling of demand. Based
on the concept of random utility, they are able to predict the choice behavior of individuals.
However, these models are highly non linear and non convex in the variables of interest, and
therefore di�cult to be included in mixed linear optimization models. Furthermore, these models
are of great importance in transportation revenue management systems. In this research, we
propose a new mathematical modeling framework to include general random utility assumption
inside discrete optimization framework. In order to tackle the non-linearity and non-convexity
imposed by choice-models, we rely on simulation to capture the probabilistic nature of demand.
Since the formulation has been designed to be linear, the price to pay is the high dimensionality
of the problem. We propose an alternative formulation aiming at reducing the size of the
problem. We have performed some preliminary experiments for small instances in order to
compare the performances of the two models. Note that regardless from the implemented
formulation, additional techniques such as decomposition methods may be required for more
general instances.
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1 Introduction

During the last decade there has been an increasing trend to integrate customer behavior models
in optimization. Several applications can be found in facility location problems (Haase and
Müller (2014), Zhang et al. (2012), Benati and Hansen (2002)), and in revenue management
networks in di↵erent contexts such as transportation (Haensel and Koole (2010)) and hotel
management (van Ryzin and Vulcano (2014)). The main reason to combine the two is to provide
a better understanding of the preferences of clients to policy makers while planning for their
systems.

These preferences are formalized with predefined discrete choice models, which are the state-
of-the-art for the mathematical modeling of demand. However, their complexity leads to
mathematical formulations that are highly non-linear and non-convex in the variables of interest,
and are therefore di�cult to include in a discrete optimization model, where linearity is highly
desirable, and convexity is necessary.

As a result, in the literature discrete choice models are typically assumed to be given in order to
simplify the optimization model. The implicit understanding is that a complete prescription for
decision problems will require fitting the right parametric choice model to data, so as to make
accurate revenue predictions.

On the other hand, discrete optimization models create a platform where supply and demand
closely interact, which is typically the case in transportation problems such as airline scheduling.
Such models are associated with (mixed) integer optimization problems, whose discrete variables
are used to design and configure the supply.

There are only few instances in the literature that have integrated discrete choice models in mixed
integer linear optimization, the most typical methodology framework in operations research.
Furthermore, most of them are limited to the logit model (e.g., IIA assumption), where customers
are assumed to be homogeneous in their observable characteristics. Many techniques have been
developed in order to linearize and convexify such models. However, many of them fail to solve
real cases or large instances (Azadeh et al. (2015)).

In this research we present a general methodology that integrates both supply and demand
while keeping the discrete choice model inside the framework of a mixed linear integer problem
that is scalable and solvable within reasonable time. The main objective is to incorporate
state-of-the-art advanced discrete choice models within an optimization framework. With this
approach, which is directly derived from the theory of utility maximization, two main issues are
adressed:
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• We eliminate the nonconvex representation of choice probabilitiies, which makes the
optimization models computationally expensive.
• We can consider a vast class of discrete choice models, such as multivariate extreme

values, latent variable and latent class models, and it is not limited just to logit models.

The paper is organized as follows. In Section 2 we introduce the framework and the demand
model. A linear formulation for the maximization of revenues based on the demand is tackled
in Section 3, and an alternative formulation of reduced size is described in Section 4. Finally,
we use a case study from the literature to compare the performances of the two formulations in
Section 5, followed by the conclusions in Section 6.

2 Demand modeling

We consider a population composed of N individuals (or groups of individuals with an ho-
mogenous behavior). The set of alternatives in the market is denoted by C, and without loss
of generality it is assumed to be closed, which means that every customer chooses exactly one
product. It is always possible to include an artificial "opt-out" product to capture customers
leaving the market. In the considered market, each individual n has to choose one alternative
within the set of her available alternatives Cn ✓ C. Note that this is the first level of heterogeneity:
the set of available products may vary from one customer to the next.

Discrete choice models rely on the assumption that each individual n associates a score, called
utility, with each alternative i 2 Cn. This utility is denoted by Uin and is a function of several
variables describing the attributes of the alternative i and the socioeconomic characteristics of
the individual n, as well as the interactions between both. The main behavioral assumption is
that individual n chooses altenative i if the corresponding utility is the largest within the choice
set Cn, i.e. if Uin � U jn 8 j 2 Cn. Assume there is no tie, that is for each n and i, j 2 Cn, either
Uin > U jn or U jn > Uin. Then, we define the following indicator

win =

8>><
>>:

1 if n chooses i,

0 otherwise
8i 2 C,8n. (1)

Note that win = 0 if i < Cn.
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We also define the following binary variable to account for the availability of alternatives

yin =

8>><
>>:

1 if i 2 Cn,

0 otherwise
8i 2 C,8n. (2)

Therefore, the following statement holds for each alternative i and each individual n:

win = 1, yin = 1 and Uin � U jn,8 j 2 Cn. (3)

In practice, analysts do not have access to the exact specification of the utility, and must consider
it as a random variable. The most common specification is

Uin = Vin + "in, (4)

where Vin is the deterministic part of the utility function and "in the error term, that captures
everything that the analyst has not included explicitly in the model. We assume here that Vin

is linear in the variables involved in the optimization problem, which is not necessary for the
derivation of the choice model, but important in our context for its integration in the discrete
optimization model. With this specification, the model becomes probabilistic and (3) is now
written

Pr(win = 1) = Pr(Uin � U jn,8 j 2 Cn). (5)

It is worth nothing that the probabilistic nature of this model associates a zero probability with
ties, so that they can be safely ignored, as assumed above.

By assuming a distribution for the error terms "in we can establish concrete operational models.
For instance, the very well-known logit model assumes that the "in are independent (across both
i and n) and identically distributed, with an Extreme Value distribution. In this case, it can be
shown that (5) is characterized by

Pr(win = 1) =
yin expVin

P
j2Cn

y jn expV jn
. (6)

Other assumptions of the "in lead to di↵erent models, such as the nested logit, the cross-nested

logit or the logit mixtures model, to cite just a few. Note that the formulation in (6) is non-linear
as a function of the utilities and in the variables yin. Some linear reformulations have been
proposed in the literature (Benati and Hansen (2002), Haase and Müller (2014)).

The demand within the market for each alternative i 2 C, understood as the number of customers
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choosing that alternative, can be obtained from the introduced framework. It is given by

Di =

NX

n=1

Pr(win = 1). (7)

3 A demand based formulation for the maximization of

revenues

The demand model in (7) is in general non-linear. As stated before, various ways to linearize it
have been proposed in the literature. Here we propose a di↵erent approach, which is derived
directly from (4) and (5). We develop a general framework to model the demand, and we
characterize its usage when the price is a decision variable of the optimization problem, the
capacities for each alternative need to be taken into account and the goal is to maximize the total
revenues of the operator.

3.1 A linear formulation

For each alternative i and each individual n, we rely on simulation to generate R draws ⇠in1,. . . ,⇠inR

from the distribution of "in. It is important to notice that this can be done for a wide variety
of distributions, so that we are not restricted to logit. Each of these draws corresponds to a
behavioral scenario.

Once the draws have been generated, the probabilistic nature of the model can be captured by
simulation in the following way. The utility associated by individual n with alternative i, in the
rth scenario is denoted by

Uinr = Vin + ⇠inr =
X

k

�kxink + f (zin) + ⇠inr. (8)

Note that we distinguish between the part of Vin that is linear in the variables xink, and the part
that depends on other variables zin, in a possibly non linear way defined by f . The variables
xink are endogeneous variables of the model, since they are those involved in the optimization
problem, and zin are additional exogenous variables. Then, it does not matter if f is linear or not
in zin because f (zin) is a value that can be preprocessed. We also note that Uinr is not a random
variable.
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The full model, whose objective function and constraints are described below, is the following:

max
X

i>0

Ri, (9)

subject to

Uinr =
X

k

�kxink + f (zin) + ⇠inr, 8i, n, r, (10)

yinr  yin, 8i, n, r, (11)

yin = 0, 8i < Cn,8n, (12)

µi jnr + µ jinr  1, 8i, j, n, r, i , j (13)

µi jnr  yinr, 8i, j, n, r, i , j (14)

yinr + y jnr  1 + ⌘i jnr, 8i, j, n, r, i , j (15)

⌘i jnr  yinr, 8i, j, n, r, i , j (16)

⌘i jnr  y jnr, 8i, j, n, r, i , j (17)

Mnr⌘i jnr � 2Mnr  Uinr � U jnr � Mnrµi jnr, 8i, j, n, r, (18)

Uinr � U jnr � Mnrµi jnr  (1 � ⌘i jnr)Mnr, 8i, j, n, r, (19)

winr  µi jnr, 8i, j, n, r, i , j (20)

winr  yinr, 8i, n, r, (21)
X

i2C
winr = 1, 8n, r. (22)

The revenues of alternative i are denoted by Ri (see a characterization of this quantity in the next
subsection), and the objective is to maximize the sum of the revenues of all alternatives. Note
that in the sum i > 0 is considered. This is because in addition to the I alternatives we consider
i = 0 as the "opt-out" alternative for those customers who do not pick any alternative, either
because they do not choose any alternative at all, or they choose an alternative from a competing
market.

For the sake of generality, in addition to the variables yin described in Section 2, we introduce
the variables yinr to characterize the availability of service i to individual n in scenario r. While
yin is a decision of the operator, that is independent of the choices of the customers, these new
variables may account for the possible unavailability of an alternative due to excess of demand,
as illustrated later. Constraint (11) captures the relationship between the two. We also add
constraint (12) for the alternatives that are not available to individual n, as stated in (2).

Regarding the preferences of customers, we characterize the largest between the utilities of
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alternatives i and j. To do so, we include the indicators µi jnr, that are 1 if Uinr � U jnr for
individual n and scenario r, and 0 otherwise. Note that it is possible that µi jnr = µ jinr if the two
utilities happen to be equal, although in practice it should happen rarely. The valid inequality
(13) may be included in the model to take into account the preference of only one of the two
compared alternatives. We impose (14) so that alternative i cannot be preferred to j if the former
is not available.

We also define the binary variable ⌘i jnr to account for the availability of alternatives i and j, since
it is only necessary to compare the alternatives that are available. Then, ⌘i jnr = 1 if yinr = y jnr = 1,
and 0 otherwise. In this way, if ⌘i jnr = 0, then µi jnr⌘i jnr = 0, so that the comparison does not
make sense. This product of binary variables can be easily linearized with constraints (15), (16)
and (17).

To characterize the variable µi jnr in a linear way, we define a constant Mnr such that

|Uinr � U jnr|  Mnr,8i, j. (23)

Then, it is easy to verify that constraints (18) and (19) capture the two possibilities of the
definition of µi jnr by considering the following four cases:

• ⌘i jnr = 1 and µi jnr = 1. Then (18) and (19) are jointly written as 0  Uinr � U jnr 
Mnr,8i, j, n, r. The first inequality imposes that Uinr � U jnr, which is consistent with
µi jnr = 1, and the second inequality is always verified, from (23).
• ⌘i jnr = 1 and µi jnr = 0. Then (18) and (19) are jointly written as �Mnr  Uinr � U jnr 

0,8i, j, n, r. The first inequality is always verified, from (23), and the second imposes that
Uinr  U jnr, which is consistent with µi jnr = 0.
• ⌘i jnr = 0 and µi jnr = 1. Then (18) and (19) are jointly written as �Mnr  Uinr � U jnr 

2Mnr,8i, j, n, r, and is always verified from (23).
• ⌘i jnr = 0 and µi jnr = 0. Then (18) and (19) are jointly written as �2Mnr  Uinr � U jnr 

Mnr,8i, j, n, r, and is always verified from (23).

Now we need to adapt the choice variable defined in (1) to account for the choices of individuals
at scenario level. We define new choice variables winr, which are 1 if individual n chooses
alternative i in scenario r, and 0 otherwise. Constraint (20) states that the chosen alternative
is the one with the largest utility, constraint (21) says that an available alternative is chosen,
and constraint (22) imposes that exactly one choice is performed by each individual in each
scenario.
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With this formulation, the demand of alternative i 2 C within the market is given by

Di =
1
R

NX

n=1

RX

r=1

winr. (24)

The above model specification is pretty general, and is linear in the utility functions Uinr (and
therefore in any variable appearing linearly, in particular xink), the choice variables winr, the
preference variables µi jnr and the availability variables yin and yinr. In the next subsection we
illustrate the use of this framework for instances where pricing and capacity allocation play an
important role.

3.2 Dealing with prices and capacities

Consider an operator selling services to a market, where each service can be o↵ered at a given
price to a finite number of customers, called the capacity of the service. The demand is price
elastic and heterogenous, in the sense that each group of customers may have a di↵erent behavior.
Typical examples are airlines, where a service is a connection between two airports, or film
distributors o↵ering movies in various teathers.

We are aiming at finding the best strategy in terms of capacity allocation and pricing, in order to
maximize the revenues of the operator. The operator is o↵ering I services, each service i being
accessible to a maximum of ci customers, and an additional service denoted by i = 0 to capture
the customers leaving the market. In order to consider heterogenous demand, we assume that
the market is composed of N individuals, or group of individuals of homogenous behavior (in
the following, we refer only to "individuals").

For the pricing strategy we consider the price as an endogenous variable in the utility function
(8), that is a decision variable of the operator. The variable pin 2 R is the price that individual
n must pay to access service i. Note that the index n allows the operator to propose di↵erent
prices to di↵erent groups of individuals (e.g. students, seniors, families, etc.).

The revenues obtained by the operator from service i can be derived directly from the demand
expression:

Ri =
1
R

NX

n=1

pin

RX

r=1

winr. (25)

Since the price is an endongenous variable, (25) is non linear. A way to linearize it consists of
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assuming that pin can only take a finite number of predetermined di↵erent values: p1
in, p2

in, . . . ,
pLin

in , so that

pin =

LinX

`=1

�in`p`in, (26)

where �in` is a binary variable that is 1 if the chosen price level is pin`, and 0 otherwise. Only
one price level must be selected:

LinX

`=1

�in` = 1,8i, n. (27)

The product of the binary variables �in` and winr still needs to be linearized. We introduce the
variables ↵inr` = �in`winr, so that

�in` + winr  1 + ↵inr`, 8i, n, r, `, (28)

↵inr`  �in`, 8i, n, r, `, (29)

↵inr`  winr, 8i, n, r, `. (30)

Then, the expression of the revenues obtained from service i becomes

Ri =
1
R

NX

n=1

LinX

`=1

↵inr`p`in. (31)

As stated before, each service i cannot accommodate more than ci customers. If the demand for
service i is larger than its capacity, a selection to decide who has access to the service and who
has not must be done. Even if in a revenues maximization context the optimization algorithm
will favor customers bringing the largest amount of revenues, in many situations customers
arrive in a random order, and get served in a first-come-first-served basis.

Therefore, the model needs to know for each pair of individuals n and m if n has priority over m,
or the other way around. A simple way to model it is to provide a priority list of individuals,
where an individual is served only if all individuals before him in the list have been served. Note
that the construction of this priority list can consider various aspects of the relationships between
the operator and the customers, such as fidelity programs, VIP customers, etc. The priority list
is supposed to be given.

In addition to constraints (27), (28), (29) and (30), the following set of constraints must be
added to the model to account for capacity allocation, where cmin = mini ci, cmax = maxi ci and
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Kn = max(n, cmax):

yinr � yi(n+1)r, 8i, n, r, (32)

ci(1 � yinr) 
n�1X

m=1

wimr + (1 � yin)cmax, 8i > 0, n, r, (33)

n�1X

m=1

wimr + (1 � yin)cmax  (ci � 1)yinr + Kn(1 � yinr), 8i > 0, n > cmin, r, (34)

NX

n=1

winr  ci, 8i, r. (35)

Constraint (32) assumes that the customers are numbered according to a priority list. To verify
constraint (33) we take into account the three possibilities for the availability variables (note
that yinr = 1 and yin = 0 is not feasible due to constraint (11)):

• If yinr = 1, then yin = 1 (because of (11)), and this constraint becomes 0  Pn�1
m=1 wimr, that

is always verified.
• If yinr = 0 and yin = 1, we obtain ci 

Pn�1
m=1 wimr, which means that the capacity has been

reached due to the choices of individuals 1 to n � 1 in the priority list. It is the scenario
when service i is available to n (yin = 1), but there is not room left due to the choices of
other customers (yinr = 0).
• If yinr = 0, then yin = 0, and we obtain ci 

Pn�1
m=1 wimr + cmax, that is always verified, as all

winr are equal to 0, because service i is not available.

Finally, constraint (35) imposes that the demand cannot exceed the capacity, and to verify
constraint (34) we consider the same cases for yin and yinr:

• If yinr = 1, then yin = 1 and we obtain 1 +
Pn�1

m=1 wimr  ci, which imposes that the number
of individuals up to and including n who have chosen i must not exceed the capacity.
• If yinr = 0 and yin = 1, we obtain

Pn�1
m=1 wimr  Kn, that is always verified because

Pn�1
m=1 wimr  n  Kn.

• If yinr = 0, then yin = 0, and we have
Pn�1

m=1 wimr + cmax  Kn, that is always verified,
as all winr = 0, because service i is not available. Note that no constraint is needed for
individuals n = 1, . . . , cmin, as there is always enough capacity for these customers.

In some applications, the capacities ci are not given and must be decided. If ci are decision
variables, the above formulation becomes non linear due to the capacity constraints (33) and
(34). To linearize it we can proceed in a similar way as we have done with pin. Each service is
replaced by Q services, each of them with a di↵erent capacity, and such that only one will be
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open. We do not include here the details because we will assume for the remaining part of the
paper that the capacities are given.

4 An alternative formulation

Some of the constraints in the formulation presented in Section 3 are at the order of I2NR, when
every two alternatives are compared for each individual and each scenario. This comes with
a high computational price. In this section we propose a partial reformulation of the model in
order to reduce its size, and potentially decrease its computational time (see Section 5 for the
comparison of the performances of the two formulations).

The variables µi jnr allow us to compare the utilities pairwise. However, it is only required to
identify the alternative with the highest utility among the available ones for each individual n and
scenario r. In order to account for availability in this case, we define the following continuous
variable:

⌫inr =

8>><
>>:

Uinr if yinr = 1,
linr if yinr = 0

8i 2 C,8n,8r, (36)

where linr = min Uinr for alternative i, individual n and scenario r.

In this way, when the alternative i is available (yinr = 1), ⌫inr takes the value of the utility itself
(Uinr), but otherwise it is set to its lowest possible value, so that there might be other alternatives
more "attractive" (i.e.with a higher utility) and "competing" to be the chosen one (i.e. the one
with the highest utility). To characterize (36) linearly the following constraints are required:

linr  ⌫inr, 8i, n, r, (37)

⌫inr  linr + (minr � linr)yinr 8i, n, r, (38)

Uinr + (linr � minr)(1 � yinr)  ⌫inr, 8i, n, r, (39)

⌫inr  Uinr, 8i, n, r, (40)

where minr = max Uinr. Constraints (37) and (38) force the variable ⌫inr to be linr if the alternative
is not available, and constraints (39) and (40) to be Uinr otherwise.

Note that the concept of minimum (linr) and maximum (minr) of utilities for a given alternative
i, individual n and scenario r depend on the price levels (if there is more than one), according
to the framework described in Section 3. In fact, all else being equal, and assuming that the
� parameter associated to the price is negative (the higher the price of an alternative, the less

10
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attractive it will be for the customer), we have that the lowest price level leads to the highest
utility and the other way around for the highest price level.

Once the availability at scenario level is taken into account, we define a continuous variable to
capture the highest utility:

Unr = max
j2Cn

U jnr. (41)

In order to linearize the maximum of continuous variables the lower and upper bound of the
variables must be provided. This is actually the case because linr  Uinr  minr 8i, n, r are known.
We also need to define dummy variables to account for the alternative with the highest utility

µinr =

8>><
>>:

1 if Unr = Uinr,

0 otherwise
8i 2 C,8n,8r. (42)

These binary variables are related to the availability and choice variables in the following way:

µinr  yinr, 8i, n, r, (43)

winr  µinr 8i, n, r, (44)

where constraint (43) states that an unavailable alternative cannot be the one with the highest
utility, and constraint (44) says that an alternative that does not have the highest utility cannot be
chosen.

Finally, the constraints for the linearization of the Unr are

⌫inr  Unr, 8i, n, r, (45)

Unr  ⌫inr + Minr(1 � µinr) 8i, n, r, (46)
X

i2C
µinr = 1, 8n, r, (47)

where Minr = max j2Cn mjnr � linr. Note that we consider ⌫inr instead of Uinr itself to account for
the availability of alternative i, as described above. We consider two cases:

• yinr = 1. Then ⌫inr = Uinr and constraint (45) is written as Uinr  Unr, which is always
satisfied. Constraint (46) has two possibilities according to the value of µinr:

– µinr = 0 means that there is an alternative with a higher utility, so this constraint is
written as Unr  Uinr + Minr and is always verified.

– µinr = 1 means that alternative i has the highest utility, that is Unr = Uinr. This
equality is actually obtained from constraints (46), which is written as Unr  Uinr,
and constraint (45), that contains the other sense of the inequality.

11
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• yinr = 0. Then ⌫inr = linr and constraint (45) is written as linr  Unr, that is always satisfied.
According to constraint (43), µinr can only be 0. Then, constraint (46) is written as
Unr  linr+Minr ⇢⇢linr+max j2Cn mjnr�⇢⇢linr, which also holds since Uinr  minr 8i 2 Cn, n, r.

The rest of the framework described in Section 3 remains the same. With this new formulation
there are no variables at order I2NR anymore, being the highest order INR. In the following
section a real case study from the literature is considered in order to compare the computational
times and the objective values of the two models.

5 Preliminary experimental results

For the comparison of performances we consider the case study developed in Ibeas et al. (2014),
whose data was kindly provided by the authors. Their goal is to assess the local authorities of
a small coastal town of Spain for the building of an underground car park due to the lack of
available parking. They use a mixed logit model (i.e. accounting for random taste parameters)
to characterize the behaviour of potential car park users when choosing a parking place. We
have chosen this work because it allows us to illustrate our formulation for models di↵erent than
logit.

The data was collected from a stated preferences survey, with a final sample size of 197
respondents. The choice set was composed by three alternatives: the two existing ones, free
on-street parking (FSP) and paid on-street parking (PSP); and the one to be tested, paid parking
in an underground car park (PUP). The survey was composed of eight choice scenarios, each of
them with di↵erent values for the variables considered in the experimental design: access time
to the parking, access time to the destination and parking fee.

Our fomulation is not designed to take into account stated preferences data, so we need to adapt
the dataset from the case study to our particular case. To do so we consider only one of the
scenarios (scenario 1) to characterize the values of access time to the parking and access time
to the destination for the three alternatives. Note that parking fee is not an input value. In
fact, it is the only decision variable that we consider in the optimization problem. Its levels
are those defined in the di↵erent scenarios. In particular, 0.6 and 0.8 for FSP, and 0.8 and 1.5
for PUP. Note that FSP has no price levels because it is free, so it is always 0. Finally, since
the capacities for the alternatives are not specified, we can set them to any value to generate
di↵erent instances.

The utility functions for each alternative are described by the author. They include as attributes
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Table 1: Performance of the two models for a subset of 25 individuals

Capacities Initial model Alternative model

N R cFS P cPS P cPUP Time(s) Obj Time(s) Obj Gap (%)
25 1 10 10 10 0.37 18.30 0.20 18.30 45.95
25 5 10 10 10 6.48 18.58 3.20 18.58 50.62
25 10 10 10 10 32.65 18.86 8.49 18.86 74.00
25 50 10 10 10 353.47 18.89 74.21 18.89 79.01
25 100 10 10 10 1060.32 18.92 431.46 18.92 59.31

Source: own

Table 2: Performance of the two models for a subset of 50 individuals

Capacities Initial model Alternative model

N R cFS P cPS P cPUP Time(s) Obj Time(s) Obj Gap (%)
50 1 20 20 20 0.58 33.10 0.43 33.10 25.86
50 5 20 20 20 55.95 32.26 11.58 32.26 79.30
50 10 20 20 20 307.95 31.56 97.12 31.56 68.46
50 25 20 20 20 1616.57 32.23 763.37 32.23 52.78

Source: own

of the alternatives the variables of the experimental design (for the case study the parking fee
was given by the configuration of the scenario), being the access time to the parking and the
parking fee the ones with random parameters (di↵erent among individuals). Regarding the
socioeconomic characteristics of the individuals, the origin of the journey (if it is internal or
external to the twon, only for FSP) and the age of the vehicle (only for PUP) are taken into
account. They also consider the interactions of parking fee with socioeconomic variables, in
particular low income level and the fact of being resident in the study area. The utility of the
"opt-out" alternative is defined in a way that it is the less atractive for all individuals in all
scenarios.

The optimization problem has been implemented in a C++ environment, and has been solved
with CPLEX 12.6.2. For the sake of illustration, and given the large dimension of the model, it
has been solved for a reduced subset of individuals and a reduced number of draws. Tables 1
and 2 show the values that have been set for the capacities (that have been set in such a way that
they are not too tight but also not too loose), the computational times and the objective values
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for the two formulations, and the gap between the times calculated as

talternative � tinitial

tinitial
· 100. (48)

In both cases, the computational time is improved substantially, being in some cases decreased
by more than 70%. The objective values are the same in both formulations. We note that
the values that are supposed to be randomly generated in the model are the same for the two
instances, that is they have been generated beforehand. Regarding the number of draws, the idea
is to consider a number of draws such that the objective value stabilizes. In this case, it keeps
growing for 25 indivdiuals and oscillating for 50 individuals, which shows that more draws may
be required.

6 Conclusions

In this paper, we presented a new mathematical model that integrates choice modeling with
optimization in a linear way. In fact, with the help of utility maximization theory and simulation,
we suceed to overcome the non-linearity and non-convexity caused by the choice probabilities.
Furthermore, we also introduced an alternative equivalent formulation of reduced size that
speeds up the computational time, as shown by the results.

Despite the improvement, for a population of 50 individuals, a run with only 25 draws already
takes almost 30 minutes, and we are interested in a higher number of draws, since the more
draws we consider, the better the estimation of the objective value. Then, when the number
of alternatives, simulation draws and individuals grow, the problem might take really long to
be solved. However, since the individuals and the scenarios are independent from one another,
decomposition techniques may be considered to solve large instances.
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