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Abstract

This paper proposes a general methodology to model pedestrian destination choice from WiFi
localization in multi-modal transport facilities (e.g., airports, railway stations). It is based on
the output of Danalet et al. (2014) method to generate candidates of activity episode sequences
from WiFi measurements, locations of activities on a map and prior information.

Destination choice is nested to the activity choice. An individual first chooses an activity
(Danalet and Bierlaire, 2015), and then selects the destination where to perform it. We propose
an approach to model destination choice accounting for panel nature of data. We compare static,
dynamic strictly exogenous and dynamic with two different agent effect corrections models with
inspiration from Wooldridge (2002) method.

In a case study using WiFi traces on EPFL campus, we focus on one activity: catering. The
choice set contains 21 alternatives on campus (restaurants, self-services, cafeterias,. . . ). Our
models reveal that the choice of a catering facility especially depends on habits (e.g., where an
individual ate the previous time), distance to walk from the previous activity episode (calculated
with a weighted shortest path algorithm) and destination specific determinants. Price has a
non-significant impact in this case study, most likely because the price range on campus is
narrow. The models are successfully validated using the same WiFi dataset.
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1 Introduction

This paper proposes a framework to model pedestrian demand in multi-modal transport hubs
such as airports or train stations. The use of those facilities increases, both for trains (425 million
passengers in 2008 in Switzerland, 477 million in 2013, +12% (OFS, 2014)) and for planes (2
billion passengers in 2005 in the world, 3 billion in 2013, +50% (Worldbank, 2014)). Histor-
ically, paper-and-pencil or telephone surveys were conducted to collect data (information on
people behavior and habits). They were expensive and could not be performed often. Nowadays,
modern hubs all propose “free Wi-Fi”. Localization data from cell phones, tablets and computers
can thus be collected from access points all around these stations. These data are cheap and can
cover the whole facility. Recently, Danalet et al. (2014) developed a methodology to use these
data, where each measurement is associated to a point of interest (e.g., coffee shop, restaurant,
ticket machine. . . ) in time.

Knowing people location in time permits to generate probabilistic candidates of activity episode
sequences. They can be used to develop both an activity choice model (this first step is dis-
cussed in Danalet and Bierlaire (2015)) and a destination choice model. These two models are
sequential. Liu et al. (2014) suggest that they are explored together. Once an individual has
chosen an activity, he selects the destination where to perform it (Bierlaire and Robin, 2009).
This report discusses the second step of the sequence. It especially focuses on the development
of a general methodology to describe and understand destination choice for pedestrians. We
model and forecast people behavior based on WiFi data when visiting such a facility. These
forecasts aim at optimizing multi-modal transport hubs, e.g., finding the optimal location for
coffee shops or ticket machines.

To be more specific, the project is part of a collaboration between “Ecole Polytechnique Fédérale
de Lausanne” (EPFL) and the Swiss Railway company (CFF) in the context of the project
“Léman 2030” (CFF, 2014). It includes an increase in trains offer (100’000 travelers expected
in 2030, 50’000 in 2013 – +100%) and huge changes in Geneva and Lausanne train stations.
Furthermore, the CFF are one of the most important property owners in Switzerland. Their
lands have become a major source of income. RailCity is the name given to the largest railway
stations because of their similarities to cities: more and more, train stations offer the opportunity
not only to travel but also to eat, drink, shop, or entertain oneself. In 2009, the revenue of these
infrastructures was about 1.09 billion of Swiss francs (CFF, 2011). In order to optimize their
stations, the company wants to know how people behave when they visit the facility.

A random pedestrian for example arrives at the station at 7:45 AM (it is the beginning of
his activity episode sequence), buys a ticket at 7:49 AM, gets a sandwich at 7:58 AM and then
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moves to the platforms at 8:01 AM to take a train scheduled at 8:04 AM (it is the end of his activ-
ity episode sequence). Once the activity is chosen (i.e., buying a ticket or getting a sandwich), a
specific destination needs to be chosen (i.e., a specific ticket machine or a specific luncheonette).
If the pedestrian wants a sandwich, he has to visit a place where such a service is available
(Subway, Polli, Coop. . . ). He performs a destination choice. As soon as the destination is known,
a path needs to be defined. These nested episodes represent pedestrians tactical and strategical
behavior (Hoogendoorn et al., 2002). Similar studies have already been made for a destination
choice model in railway stations (e.g., Ton (2014); Liu (2013)) or airports (e.g., Kalakou and
Moura (2014b)). However, only Ton (2014) is developed from WiFi traces. The others are based
on stated/revealed preference surveys. Pettersson (2011) also studies the behavior of pedestrians
in train stations but he focused on the factors (e.g., information, geometry, habits) influencing
the waiting location of people on departure platforms. He used both video tracking and surveys.

The goal of this project is to develop a general framework to model destination choice and to
apply it to the EPFL campus. Indeed WiFi traces from April 2012 to June 2012 are available
(Danalet, 2015) and allow to track random people on the campus and to define their probabilistic
activity episode sequences. The paper describes several destination choice models on eating
establishments (e.g., restaurants, self-services, cafeterias. . . ) on EPFL campus. Multinomial
Logit Models and Mixed Logit Models are generated in order to explain the factors that influence
pedestrians’ choice for one catering destination compared to another. This paper also reviews the
existing literature (see Section 2), explains the data requirement and the data merging, introduces
new concepts (i.e., according to our researches, agent effect correction for pedestrian’s panel data
has never been explored before) (see Section 3) and discusses several examples of destination
choice models for pedestrians (see Section 4).
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2 Literature review

The literature review is separated into three parts. Section 2.1 explores methods to capture
indoor pedestrians activities. In Section 2.2, destination choice models in multi-modal transport
hubs are analyzed. Finally, Section 2.3 discusses the advantages and disadvantages of each
methods.

2.1 Activity episodes detection

In Ton (2014), WiFi and Bluetooth traces are involved. The methodology to transform signatures
into activity sequences is not revealed in detail. It is shortly discussed in Section 2.2. In Danalet
et al. (2014), data requirement consists of timestamps and localization data coming from WiFi
network traces and a semantically-enriched routing graph (SERG). A measurement is defined as

m̂ = (x̂, t̂) (1)

where x̂ ∈ R3 is the position of the measurement and t̂ is the timestamps. The accuracy ξ defines
the distribution of the Euclidean distance between the location estimate x̂ and the actual location
å

x̂ = å + ξ (2)

In order to associate activity episodes (including stop detection and semantics of the stop) to
these measurements, a semantically enriched routing graph (Goetz and Zipf, 2011) is defined as
a set of nodes corresponding to the type of potential destinations (room, restaurant, shop. . . , i.e.,
all points of interest).

The methodology to detect candidates of activity episode sequences performed by pedestrians
from the previously calculated digital traces follows a Bayesian approach explained in Danalet
et al. (2014). An activity episode is defined as

a = (x, t−, t+) (3)

where x is the episode localization and t+ − t− ≥ Tmin the time spent at that location. A minimum
threshold Tmin of five minutes is set like in Bekhor et al. (2013). It permits to only keep activity
episodes longer than five minutes (and thus representing a destination and not only a crossing
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point). The output of this probabilistic method is defined as a set of L candidates of activity
episode sequences a1:Ki which are specific to an individual i. Basically an activity episode
sequence is a list of Ki activity episodes performed (i.e., visited points of interest) by one tracked
individual i during one day. Each candidate activity episode sequence is associated with the
probability of being the actual one. Danalet et al. (2014) define this probability as a Bayes
formula (the subscript i is omitted to lighten the expressions):

P(a1:K |m̂1:J) ∝ P(m̂1:J |a1:K) · P(a1:K) (4)

It means that the activity probability P(a1:K |m̂1:J) that a1:K is the actual activity episodes sequence
given in the measurement m̂1:J is proportional to the product of the measurement likelihood
P(m̂1:J |a1:K) with a prior knowledge P(a1:K). As the goal is to compute the probability that the
performed episodes generated the observed measurement sequence, the equation is decomposed

P(m̂1:J |a1:K) =

K∏
k=1

J∏
j=1

P(x̂k
j |xk) (5)

It is assumed that the only measurement error is a localization error. Similar to the land use
planning concept (Miller, 2010), a prior is defined as:

S x,i(t−, t+) =

∫ t+

t=t−
δx,i(t) · Ai(x, t)dt (6)

The idea is that the potential attractivity measure S x,i(t−, t+) between a start time t− and an
end time t+ for x ∈ POI and individual i is time dependent. It depends on the instantaneous
potential activity and a dummy variable δ for time-constraints (e.g., opening hours, schedules. . . ).
The attractivity Ai(x, t) must define the potential of a place (e.g., number of seating places for
restaurants or number of workers per room for an office) as explained in Danalet et al. (2014).
Then the prior can be calculated as

P(a1,K) =

K∏
k=1

S xk ,i(t
−
k , t

+
k )∑

x∈POI S x,i(t−k , t
+
k )

(7)

It assumes that consecutive activity episodes are independent.

Danalet et al. (2014) propose an algorithm to merge data from localization and pedestrian
SERG to get candidates of activity episode sequences. The generation of activity episode se-
quences is divided in four steps. The first one introduces the concept of domain of data relevance
(DDR) introduced in Bierlaire and Frejinger (2008). The DDR defines a physical area where a
probabilistic measurement location linked to a POI is relevant. For each measurement m̂ j, all
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possible activity episodes sequences are generated for each individual. It leads to a recursively
built network.

The second step consists in generating activity episodes start and end times as soon as a
sequence of potential episode locations is defined. The idea is to compare two consecutive
measurements m̂ j and m̂ j+1. Their timestamps and positions define a trip between them and thus
a travel time. In that way, considering a maximum walking speed and a shortest path algorithm
between both positions, bounds can be determined for the earliest and the latest start time and the
earliest and the latest end time. Start and end times are considered to be uniformly distributed
between these two bounds.

Third, once the distribution is known for the start and end times of each activity episode,
the duration is estimated. Activity episodes with a lower bound smaller as Tmin are rejected. The
last part of the procedure is the sequence elimination procedure. As the number of path in a
network growth exponentially with the number of measurement, there is a need for selection.
Candidates with small probability of occurrence are rejected. The complete algorithm is avail-
able in Danalet et al. (2014). The methodology has been tested and validated on EPFL campus.

In Dalumpines (2014), the data requirement consists in GPS data. A GIS-based episode
reconstruction toolkit (GERT) automatically extracts activity episodes from GPS data and de-
rives information related to these episodes. This kit generates an input for route choice modeling.
The methodologies of Danalet et al. (2014) and Dalumpines (2014) are similar but the latter
classifies activity episodes into different types using multinomial logit models. Also, the first one
deals with small scale problems (e.g., a multimodal facility, a campus. . . ) whereas the second
one fits better on a much larger framework (e.g., a transportation network).

2.2 Destination choice models for pedestrians

2.2.1 Influence of Space Syntax

Price of a ticket and distance are intuitive factors used to explain a destination choice. When it
comes to a pedestrian destination choice model, more determinants have to be accounted for.
Kalakou and Moura (2014a,b) study the influence of space syntax (SS). SS is a theory and a set of
methods about space reflecting both the objectivity of space and the intuitive engagement with it
(Hillier, 2005). Important characteristics about space are connectivity, integration and visibility.
Connectivity is a factor that expresses the number of “neighbors” of each space. Integration is
the relation of one space with all others. According to Zhang et al. (2012) visibility is one of
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the most influential factors in people’s behavior when moving in commercial areas. Ueno et al.

(2009) find out that the visibility, the number of turns and the distance affect pedestrians’ path
choice in railway stations.

2.2.2 An analogy with route choice modelling

Hoogendoorn and Bovy (2004) distinguish three levels of choices: the strategic level (Activity
pattern choice and departure time choice), the tactical level (Activity scheduling, destination
choice and route choice) and the operation level (walking behavior). An activity may be per-
formed at multiple destinations.

According to Hoogendoorn and Bovy (2004), the choice of an activity area is based on factors
such as the directness (number of sharp turns and rapid directional changes (Helbing, 1997)),
the distance and the level-of-service of the route, the necessity of performing that activity (e.g.,
is it mandatory?) and personal preferences. Furthermore, the choice of a route and the choice of
a destination are done simultaneously thus factors influencing both choices are considered.

2.2.3 Destination choice models in airports

Kalakou and Moura (2014b) made a survey in Lisbon Portela’s airport and collected information
about space syntax and travelers’ habits. A discrete choice model was built to capture the
significant parameters that influence the choice of a destination. Four coffee shops were selected
as potential destinations. Space syntax parameters were introduced in the model. Visibility
from a mandatory place to visit (check-in, entrance) has a significant impact on the choice of a
destination. The integration level of the activity location adds value to a place for passengers
who only choose one coffee shop. Similarly places having a good connectivity are more likely
chosen after the check-in.

Liu (2013) also studied pedestrian behavior in an airport on the basis of both revealed and
stated preference survey data. They develop an activity-destination choice model. Travel dis-
tance, congestion or the type of service have a significant impact in people’s decisions. Models
validated by Liu (2013) are used for forecasting: in more than 50% of the cases, the prediction
fits the observation.
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2.2.4 Destination choice models in a railway stations

Ton (2014) studies the route and activity location choice behavior of departing pedestrians
in the Utrecht railway station in Netherlands. Using WiFi and Bluetooth traces, she builds
both destination and path choice models. Her work is based on a framework proposed by
Hoogendoorn et al. (2002). It focuses on the strategical and tactical levels when faced with
discrete choices in a train station.

Ton (2014) defines an activity as a punch. The movement of a pedestrian contains several
punches (e.g., Enter the station, visit a Burger King, leave via platform. . . ). Therefore the
possible activities are caught in a punch card. However this list only tells if a pedestrian was
seen at one place or not (binary observation). It means that the sequence cannot be directly
derived from the punch card. Thus, the activity sequence must be determined. Ton (2014) does
not explain how she defines the chronological order of the punches. One limit of the data is that
the list of activities performed by an individual is only available for one day because everyone
receives a new identification number everyday to respect privacy.

Using these activity sequences, Ton (2014) applies a binary discrete model to a choice of
a coffeeshop. Two Starbucks are selling coffees in the railway station and the aim is to capture
the factors that influence pedestrian destination choice. Travel time from entrance to coffeeshop,
total distance covered and having to take a detour are robust parameters. It is interesting to note
that the orientation is also significant. The fact that a coffeeshop is located on the right hand side
of the railway station (from the main entrance) increases its utility because pedestrians are used
to walk on the right.

2.3 Critics and comments

Given the nature of our data, we discuss how we are able to account for some of the ideas
developed in reviewed literature:

• Liu (2013) and Kalakou and Moura (2014b) are based on both SP and RP surveys.
– Socio-economic parameters can easily be taken into account with surveys, not with

WiFi traces since the data are partially anonymized.
• Kalakou and Moura (2014b), Liu (2013) and Ton (2014) destination choice models were

developed for destinations in only one building.
– Impact of SS in larger facilities (e.g., a campus) is unknown.

• Liu (2013) used CCTV to emphasize the impact of congestion.

10
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– We have to find other indicators to take congestion into account.
• The methodology developed by Ton (2014) is limited because the route choice is depen-

dent of the punch card’s simplicity and does not measure pedestrian’s habits.
– WiFi traces are able to describe more accurately pedestrians movements using

Danalet et al. (2014) candidates of activity episode sequences.
• Factors such as directness (Hoogendoorn and Bovy, 2004) or the works realized by

Helbing (1997) and Ueno et al. (2009) are mainly discussing route choice.
• Alternative specific parameters (e.g., the price, the quality, the availability of services, the

comfort or aesthetic indicators) are barely described in the reviewed papers but intuitively
have an influence on people’s choice.

The methodology developed by Danalet et al. (2014) is well fitted to create a destination choice
model, but it has some limitations. The algorithm defined by Danalet et al. (2014) associates the
WiFi measurements with POI1 inside a zone. Points of interest are represented as points while
they are areas in reality. It creates a problem when the accuracy of the measurement is good and
the “zone of interest” is large. In this case, the point of interest might not be inside the domain
of data relevance (DDR2). Thus, the actual point of interest, representing the possible activity
performed by the receiver, might not be considered.

In the case of data collected with the Cisco Context Aware Mobility API with the Cisco
Mobility Services Engine (MSE) (Cisco, 2011), the domain of data relevance is defined as a
square around the measurement with sides of size 2 ∗ cF, where cF is called the confidence
factor. The WiFi device is estimated to be in this square with 95% probability. The minimum
observed cF is 16 meters (see Figure 2(c)) on EPFL campus. Some POI on campus clearly have
a surface bigger than a 16 ∗ 16 square. In this case, the intersection between the DDR (i.e., the
square with side 2 ∗ cF) and the point representing the POI might be empty, and so the actual
activity episode is not detected.

This limitation is observed in the case study (see Section 4 for a detailed description). The
data collected in the library of the Rolex Learning Center (RLC) are good due to the lack of
walls or obstacles and due to the large number of WiFi antennas3(Sen et al., 2013; Nandakumar
et al., 2012). Figure 2(b) shows that the level of accuracy in the library is higher than on the
rest of the campus. Figure 2(c) show that some points of the library effectively lead to an empty
intersection between DDR and the POI. It is a limitation of the methodology but it can be
corrected by using an area instead of a point for representing POI.

1POI: Point Of Interest, see Section 2.1
2Domain of Data Relevance, see Section 2.1
3On Figure 2(a), the density does not look higher than in other buildings on the campus. However, the RLC has

only one floor, while all other buildings have more. This is just a visual effect due to projection on the map. In
reality, density of WiFi access points is actually higher
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Figure 1: WiFi antennas and confidence factor (cF) on the EPFL campus

(a) WiFi antennas on the EPFL campus (map.epfl.ch)

60m40200Echelle 1: 3000

WiF

Sources: ©EPFL

(b) Confidence factor on the EPFL campus (Danalet, 2015)

(c) Empty intersection between DDR and POI (map.epfl.ch)
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3 Methodology

Section 3.1 describes the output of the algorithm developed by Danalet et al. (2014) and
characterizes activity episode sequences. Then, Section 3.2 presents our models’ specifications
and an approach to account for panel nature of data.

3.1 Activity episode sequences

3.1.1 Description of activity episode sequences

Danalet et al. (2014) develop a framework for detecting pedestrian mobility pattern from WiFi
traces (see Section 2.1). The methodology explained in the paper is used to create candidate’s
lists of activity episode sequences from WiFi traces. They are then used to develop a destination
choice model for pedestrians.

An activity episode sequence has several characteristics (sequence specific attributes). An
example is described in Table 1 and Figure 3. Each sequence is associated to an individual
(with a unique ID) tracked during one day and a probability of occurrence defined with its log-
likelihood. Activity episode sequences also contain several socio-economic (e.g., age, gender,
or typology of visitor) and time specific attributes (e.g., the day of the week and year of the
sequence). As sequences may be calculated during a period of several months, each individual
has potentially more than one observation.

Within the sequence, there are one or more activity episodes. Each activity episode is re-
lated to a point of interest (see Section 2.1). It is described by its start and end times bounds
(following a uniform distribution). Each point of interest associated to an activity episode
defines an activity and a destination. The activity is grouping destinations in categories. Typical
categories, or activity types, are working, maintenance, shopping, etc. Destinations are more
detailed. They have a name, coordinates and floor. Each type of destination is subject to an
independent choice model.

3.1.2 Characterization of activity episode sequences

Each activity type corresponds to several possible destinations. For each destination, three types
of attributes exist: sequence attributes (it corresponds to attributes specific to the whole one-day
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Table 1: This sequence taken from a second year bachelor student (ID=10001) in civil engi-
neering contains 3 activity episodes caught the 29th of June 2012. This student has
been seen 112 times by the Cisco WiFi device (only the destinations are kept). Each
activity episode is related to a point of interest. In that case the student first visited
the library, then printed something (still in the library) and finally went to eat at the
library’s self-service. These sequences are the input of our methodology. Each activity
episode has an upper and lower bound for both start and end times (replaced by their
mean on this figure).

Nb of observations: 112, Nb of activity episodes: 3, Date: 2012-06-29

Start_time End_time Floor Name Type X coordinate Y coordinate

09:55:01 11:01:30 1 Library_name Library 533226.888831 152274.939064
11:04:39 11:30:03 1 Printer_Lib Printer 533229.919333 152284.564615
11:37:23 13:08:04 1 Self-service_Lib Restaurant 533197.354323 152223.135494

Figure 3: This same sequence can also be represented graphically

sequence), activity episode attributes (it stands for attributes relative to one activity episode only)
and alternative attributes (they are the destination specific attributes, they need to be collected).
They are defined and imaged with examples in Table 2.

Table 2: Table of attributes

Sequence attributes Activity episode attributes Destination attributes

Day of the year Activity-type Capacity
Day of the week Start/end times Price/Quality

Socio-economic attributes Coordinates Integration
Individual specific attributes Floor Opening hours

14
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3.1.3 Calculating distances

By comparing two consecutive activity episodes of a same activity episode sequence, one can
calculate the distances between the two destinations (and similarly for all elements in the choice
set in a discrete choice context). There are two possibilities to calculate the distances. First, one
can simply compute an Euclidean distance between the consecutive activity episodes at−1 and at

using the (x, y) coordinates of the points.

d(at−1, at) =

√
(at−1,x − at,x)2 + (at−1,y − at,y)2 (8)

It means that we relax the assumption of anisotropy (Kim and Hespanha, 2003) and thus
pedestrians can reach each point with a straight line path. A better way to calculate the distances
is by using a shortest path algorithm. It may already have been constructed if the methodology
explained by Danalet et al. (2014) has been strictly followed (indeed the path generation is based
on it). It takes into account the network anisotropy and thus we obtain realistic distances.

3.2 Modelisation

3.2.1 A destination choice model

We develop a multinomial logit model with a linear-in-parameters formulation. The probability
of choosing a destination d compared to the others is defined as:

P(d|D) =
eµVdn∑D
j=1 eµV jn

(9)

We propose to split the utility function to explain the parameters one suggests to introduce. We
use again the definition from Table 2. Activity episode sequences specific parameters are mainly
represented by the distances between the consecutive performed activities. The distance beta
should be a specific one if the destinations all offer the same type of offer (e.g., a same type
of ticket machine). If the destination studied is more heterogeneous one should use alternative
specific parameters (e.g., eating establishments).

Furthermore we propose to split the distance depending of the period of the day if time of
the day may change the purpose of the visit (e.g., people visit a pub at 12 AM probably to eat
but at 10 PM to drink a beer). Still from the sequence, socio-economic parameters are difficult to
take into account because the data are usually partially anonymous. We suggest that the gender,
the age and the type of visitor are collected and introduced in the model as dummy variables to
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alleviate the alternative specific constant.

The timestamps we propose to introduce in the distance function are activity episode spe-
cific parameters. There are only few factors from this category that are added in the utility
function. The activity type permits to select a specific type of activity and the destination of
the selected activity which represents the choice that the individual made. The floor of the
destination is introduced in the case of a place without elevators.

Alternative specific parameters can be variables representing the congestion (capacity, queues),
the quality/price ratio, the space syntax (visibility, integration, directness, detour), the type of
services offered or the advertising (communication, information, directional sign). The case
study presented in Section 4 gives an example in the context of catering destinations.

3.2.2 Accounting for panel nature of data

If the network traces are collected without anonymizing the identity of the individual too often,
activity episode sequences are available for a long enough period to observe repeated destination
choices for the same activity type and a same individual. Thus it is possible to take into account
the habits of each individual i ∈ I (where I is the total sampled population of individuals).
Wooldridge (2002) develops a general methodology to deal with unobserved individual hetero-
geneity in dynamic panel data with discrete dependent variables. We apply it to our pedestrian
destination choice model.

The habits of an individual i are considered as the previous choice for the same type of activity
performed at a similar time of the day. It is represented as a dummy variable that takes the value
1 for the previously chosen alternative, 0 otherwise and -1 if no previous choice is available.
There is no strict and regular periodicity between 2 consecutive choices: it can be one day, two
weeks or several months, and it may change from individual to individual and from observation
to observation. We improve this feature in future developments to make a consistent definition
of temporal dimension. The difficulty of considering activity episode sequences over time is that
the problem becomes dynamic (Bierlaire, 2014).

The utility function at time t takes into account the choice performed at time t − 1. It means that
the observations and the error terms are not independent anymore. Figure 4 shows the interaction
between error terms, utility functions and choices performed. It leads to serial correlation and
agent effect issues (also known as one-way effect, i.e. time-invariant unobserved terms). We here
consider that the error terms are defined as the sum of two unobserved components. The first is
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Figure 4: Dynamic Markov model with correlation

Source: (Bierlaire, 2014)

a time-invariant unobserved effect (i.e., σi in Equation (12)) and the second is an error term that
is independent and identically distributed over time and individuals (i.e., ui,t in Equation (12)).
If we assume that current choices are influenced by past choices, the individual error terms are
correlated over time. We thus need to correct for this correlation issue. According to Wooldridge
(2002), it is possible to manage this issue by defining a function ci that is that is (1) conditional
to the initial choice and (2) time-invariant observed characteristics of the individual. We consider
the following distribution:

ci|yi,0, zi ∼ Normal(α0 + α1yi,0 + α2zi, σ
2
i ) (10)

We rewrite the function ci as:

ci = α0yi,0 + α2zi + σi (11)

σi is a parameter to be determined, normally distributed and independent of yi0 and zi. yi0 is
the first choice ever made by an individual i. zi reveals the individual behavior among the past
period (e.g., average distance covered, most frequently chosen destination. . . ). Thus the choice
of the alternative d at time t performed by i is rewritten as:

yd,i,t = βzd,i,t + ρyi,t−1 + α0yi,0 + α2zi + σi + ui,t (12)

Basically, the choice that the individual i does depends on some parameters observed at time t,
his choice made at time t−1 and is corrected with his first choice ever performed, some observed
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habits among the past observations, a normally distributed zero centered error distribution and
a common error term. The model is thus mixed in errors. It takes into account a panel effect
specific to each individual. The parameters β, ρ, α0, α2 and σi are estimated. As suggested by
Pirotte (1996), one has to consider short-term (between individuals variability) and long-term
effects (within an individual variability). It means that some parameters that used to be significant
in the short-term (without panel effect) should be left in the model even if they are not anymore.

Table 3: Definition of static and dynamic models. AE stands for Agent Effect. In the case study
(see Section 4), one decides to split the dynamic model with agent effect correction into
two submodels to fully understand the influence of each term of the Wooldridge (2002)
correction (e.g., α2 is equal to zero in one model).

Static model Dynamic strict exogenous model Dynamic with AE correction model

ρ = 0 ρ , 0 ρ , 0
α0 = 0 α0 = 0 α0 , 0
α2 = 0 α2 = 0 α2 , 0 or α2 = 0
σi = 0 σi = 0 σi , 0

We consider and compare three situations: a static model (no previous choice considered at
all), a dynamic strict exogenous with the period model (previous choice considered but with the
assumption that individuals have no memory on short observation periods. It means that the
choice is exogenous within a short period, but endogenous over time) and a dynamic situation
with panel data and agent effect model (previous choice considered and agent-effect issue cor-
rected). These cases are explained in Table 3.

The strict utility function may have the following shape:

Vi,d,t = AS Cd+βsocio−eco ∗ S OCIOECOi + βaltspeci f ic ∗ ALTS PECIFICd+

βdistance ∗ DIS T ANCEd + ρ ∗CHOICEi,t−1+

α0 ∗CHOICEi,t0 + α2 ∗ S OMEHABITS i,t̄ + σi

(13)

where i is an individual, d a destination and t is the time. From an activity type to another (e.g.,
buying a ticket, visiting a shop, drinking a coffee. . . ), a specific model must be developed with
a specific panel of attributes. In this paper, we make the strong assumption that choices of
destinations for different types of activities are independent: sequences of activities are series of
independent choices.
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4 A case study on EPFL campus

We perform a case study on the Ecole Polytechnique Fédérale de Lausanne (EPFL) campus
(see Section 4.1). The methodology developed by Danalet et al. (2014) converts WiFi localiza-
tions collected from students and employees into activity episode sequences. These data are
dated spring 2012. Due to privacy issues, they are partially confidential (see Section 4.2). In
Section 4.3, some descriptive statistics on the data are reported. The models are presented and
discussed in Section 4.4. A validation is proposed in Section 4.5.

4.1 The EPFL campus

We decide to work on the catering facilities destination choice and with the most likely candidate
of activity episode sequences only as a first approach (see Section 3.1). It represents 21 possible
alternatives (destinations). Their locations and types are represented on Figure 5. They are
separated in 5 categories (restaurants, self-services, cafeterias, caravans and others) depending
on the sort of service they propose (see Table 4). We use the methodology introduced in the
previous chapter (see Section 3).

The activity episode sequences contain socio-economic information such as the individual
anonymized and unique ID and the occupation (student or employee, see Section 4.2). They also
collect the day of the year and the start and end times of the full sequence. Activity episodes
contain start and end times and the location of the activity (destination).

We compare two consecutive activity episodes of a same day to calculate the distance be-
tween all the possible destinations (see Section 3.1.3). As People are tracked during a period of
three months each individual has several observations (activity episode sequences). We use them
to measure their habits (previous, first and most frequent choices as explained in Section 3.2.2).

More information is required in order to explain people destination choice. These factors are
related to the destination (destination specific attribute) and not to the individual (socio-economic
attribute). Services’ availability is described in Table 5. Factors such as prices, outside/inside
capacities, opening hours or quality surveys have been collected from the EPFL restauration
service. Collected data are explained below.
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Figure 5: Localization of destinations on the EPFL campus (map.epfl.ch)
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Table 4: Table of types of destinations

Destination Type

Cafe Le Klee Cafeteria
BC Self-service
BM Other
ELA Cafeteria
INM Cafeteria
MX Cafeteria
PH Other
L’Arcadie Cafeteria
L’Atlantide Self-service
Le Copernic Restaurant
Le Corbusier Self-service
Le Giacometti Cafeteria
Le Parmentier Self-service
Le Vinci Self-service
L’Esplanade Self-service
L’Ornithorynque Self-service
Pizza Caravan
Kebab Caravan
Satellite Cafeteria
Le Hodler Self-service
Table de Vallotton Restaurant

Cafeterias mostly offer coffee and sandwiches and can usually be used as workspaces outside
lunch hours. Self-services have at least one hot lunch menu and may also propose pizzas, meat
or pastas. Restaurants have several menus, propose a table service and are more expensive than
the other catering destinations.

Caravans sell kebabs, pizzas and French-fries. They can be considered as fast-foods. The
other catering areas are tables with an automatic coffee machine and a microwave. They are
used for coffee breaks. Thus, catering destinations are not necessary visited with intent to have
lunch. As Table 6 suggests, some of them are open all day as others are only open for a couple
of hours during lunch time. The lunch period is the only moment of the day where all the eating
establishments on the campus are open.

Table 7 shows the maximum and minimum prices for a hot meal at each destination. One can see
that self-services all have a 7 CHF menu for students (Self-services get subsidies from EPFL)
except for self-service L’Ornithorynque and self-service L’Atlantide who have a menu for about
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Table 5: Table of services availability

D
es

tin
at

io
n

C
off

ee
H

ot
m

ea
l

Ta
bl

es
se

rv
ic

e
V

is
ib

ili
ty

Te
rr

ac
e

W
or

ks
pa

ce
G

re
en

fo
rk

D
in

ne
r

Sa
nd

w
ic

he
s

Se
le

ct
a

Fo
od

Ta
p

be
er

Fi
de

lit
y

ca
rd

%
A

v.

C
af

et
er

ia
C

af
e

L
e

K
le

e
X

0
0

X
0

X
0

0
X

X
X

X
0

53
,8

%
Se

lf
-s

er
vi

ce
B

C
X

X
0

0
X

X
X

0
0

X
X

0
0

53
,8

%
O

th
er

B
M

X
0

0
0

X
X

0
0

0
X

0
0

0
30

,8
%

C
af

et
er

ia
E

L
A

X
0

0
0

X
X

0
0

X
0

X
0

0
38

,5
%

C
af

et
er

ia
IN

M
X

0
0

X
X

X
0

0
X

X
X

0
0

53
,8

%
C

af
et

er
ia

M
X

X
X

0
0

X
X

X
0

X
X

X
0

0
61

,5
%

O
th

er
PH

X
0

0
0

0
X

0
0

0
X

0
0

0
23

,1
%

C
af

et
er

ia
L’

A
rc

ad
ie

X
X

0
X

X
X

0
0

X
0

X
X

0
61

,5
%

Se
lf

-s
er

vi
ce

L’
A

tla
nt

id
e

X
X

0
X

X
X

0
0

X
0

X
0

0
53

,8
%

R
es

ta
ur

an
tL

e
C

op
er

ni
c

0
X

X
X

X
0

0
0

0
0

X
0

0
38

,5
%

Se
lf

-s
er

vi
ce

L
e

C
or

bu
si

er
0

X
0

0
X

0
X

0
0

0
X

0
0

30
,8

%
C

af
et

er
ia

L
e

G
ia

co
m

et
ti

X
0

0
X

X
X

0
0

X
X

X
0

0
53

,8
%

Se
lf

-s
er

vi
ce

L
e

Pa
rm

en
tie

r
0

X
0

X
X

0
X

X
0

0
X

0
0

46
,2

%
Se

lf
-s

er
vi

ce
L

e
V

in
ci

0
X

0
X

X
0

X
0

0
0

X
0

0
38

,5
%

Se
lf

-s
er

vi
ce

L’
E

sp
la

na
de

X
X

0
X

X
X

X
X

X
X

X
0

0
76

,9
%

Se
lf

-s
er

vi
ce

L’
O

rn
ith

or
yn

qu
e

0
X

0
0

X
0

0
0

0
0

X
0

0
23

,1
%

C
ar

av
an

Pi
zz

a
0

X
0

X
X

0
0

X
0

0
X

0
X

46
,2

%
C

ar
av

an
K

eb
ab

0
X

0
X

X
0

0
X

0
0

X
0

X
46

,2
%

C
af

et
er

ia
Sa

te
lli

te
X

0
0

X
X

X
0

0
X

0
X

X
X

61
,5

%
Se

lf
-s

er
vi

ce
L

e
H

od
le

r
0

X
0

0
0

X
X

0
0

X
X

0
0

38
,5

%
R

es
ta

ur
an

tT
ab

le
de

V
al

lo
tto

n
0

X
X

0
0

0
0

0
0

0
X

0
0

23
,1

%

%
A

va
ila

bi
lit

y
57

,1
%

66
,7

%
9,

5%
57

,1
%

81
%

61
,9

%
33

,3
%

19
%

42
,9

%
42

,9
%

90
,5

%
14

,3
%

14
,3

%

22



Destination Choice Model including panel data using WiFi localization in a pedestrian facility April 2015

Table 6: Opening hours and availability of destinations
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Table 7: Table of student prices

Destination Cheapest Most expensive

Cafeteria Cafe Le Klee - -
Self-service BC 7 12
Other BM - -
Cafeteria ELA - -
Cafeteria INM - -
Cafeteria MX 7 7
Other PH - -
Cafeteria L’Arcadie 9.9 9.9
Self-service L’Atlantide 9.8 9.8
Restaurant Le Copernic 18.5 27
Self-service Le Corbusier 7 11
Cafeteria Le Giacometti - -
Self-service Le Parmentier 7 12
Self-service Le Vinci 7 12
Self-service L’Esplanade 7 9
Self-service L’Ornithorynque 7.65 11.05
Caravan Pizza 8 12
Caravan Kebab 7 10
Cafeteria Satellite - -
Self-service Le Hodler 7 14
Restaurant Table de Vallotton 25 31

10 CHF. Restaurants are more expensive. Their cheapest meal is 18.5 CHF for Restaurant Le
Copernic and 25 CHF for Restaurant La Table de Vallotton. Caravans sell Kebabs for 7 CHF
and pizza (without fillings) for 8 CHF.

The only gap in these prices is between Restaurants and the rest of the destinations. Restau-
rants are mainly frequented by visitors, professors and employees. The maximum prices of
self-services and caravans still are below the restaurants’ cheapest menu’s price. Employees
must pay an additional amount of 1 CHF for self-services 7 CHF meals. There are no prices
differences on the other menus. Students pay at least 7 CHF for a hot meal and personnel at
least 8 CHF (except if they order a kebab).

The capacity (see Table 8) varies a lot between all the destinations. It is necessary to separate
the inside capacity from the outside capacity as they are not available in winter or when it rains.
Only caravans do not have an inside seating area. The inside capacity fluctuates between 25 and
320 seats. Furthermore some self-services offer up to 180 seats on their terrace. They are the
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Table 8: Table of capacities

Destination Inside Outside

Cafeteria Cafe Le Klee 70 0
Self-service BC 82 119
Other BM 60 10
Cafeteria ELA 98 68
Cafeteria INM 20 14
Cafeteria MX 50 25
Other PH 15 0
Cafeteria L’Arcadie 60 100
Self-service L’Atlantide 125 50
Restaurant Le Copernic 105 50
Self-service Le Corbusier 228 100
Cafeteria Le Giacometti 90 30
Self-service Le Parmentier 320 52
Self-service Le Vinci 240 52
Self-service L’Esplanade 225 180
Self-service L’Ornithorynque 250 120
Caravan Pizza 0 15
Caravan Kebab 0 0
Cafeteria Satellite 200 30
Self-service Le Hodler 128 0
Restaurant Table de Vallotton 80 0

destinations with the highest capacities.

Since the campus is outside the city center, they need to accommodate all students and employees
(about 12’000 people) for lunch with affordable menus and a large capacity. In 2012, the food
service (restauration.epfl.ch) from EPFL made a survey (on both pen-and-paper and Internet
supports) concerning the quality of the food on the campus. People were asked to grade the
quality of food and to answer some questions about their habits and destination choice’s factors.
The results show that people choose their lunch destination because of determinants such as
the proximity, the price, the meal itself (not taken into account in the model because it was not
available) or the time they are willing to spend. These factors and the grades given to each
destination are used in the model.

All the destinations got a grade superior to the mean (4). Furthermore, destinations with
higher prices have a better evaluation which means that the price reflects the quality of the food
and of the service. Small cafeterias also have good grades although they do not sell hot meals.
According to the survey, these destinations have a good relation with customers.
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Each destination has several additional services. They are summarized in Table 5. Most
of the eating establishments have a terrace and sell food (of any kind) but only 67% offer a hot
meal. The majority of them is selling coffee and proposes a workspace. Also, 57% of places are
visible from the common sidewalk. Just 43% of the places sell sandwiches or have a Selecta
(automatic vending machine). One third of the destinations are part of the “Green Fork” (a
quality label) deal and only 14% of them sell tap beers or have a fidelity card.

Self-service L’Esplanade is the most complete catering destination. Nearly all services are
available and it is located in the middle of the campus. Only table service, tap beer and fidelity
card are missing. On the other hand, restaurants and self-service L’Ornithorynque only have
half of all the presented services. There is not much heterogeneity between destinations of a
same type.

4.2 WiFi traces on the campus

In their case study, Danalet et al. (2014) explain the nature of EPFL WiFi data (the data are
available in Danalet (2015)). People working or studying on the campus can connect to the WiFi
network (see Figure 2(a)) for free using their username. The authentication is made through
WiFi Protected Access using a radius server. It processes accounting by allowing to associate a
MAC address with the username.

In order to anonymize the data, the username and the MAC address are replaced by a in-
dividual and unique ID and a socio-economic attribute: the category of users. They are shown in
Table 9.

Table 9: Category of traced individuals

Students Employees

Section Semester Number of observations Number of observations

Civil engineering 4 141
Computer science 4 89
Computer science 8 54
Mathematics 2 109
Life science engineering 2 152
Physics 2 140

Total 685 1323

Total number of observations: 2008
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Also, the number of observations per occupation is specified. Employees represent the majority
of the total sample. The number of visits in eating establishments varies between 54 for students
in master of computer science and 152 for life sciences bachelor students. Note that these
activity episodes are performed by 192 different individuals.

4.3 Descriptive statistics on activity episodes

We compute some descriptive statistics about destination choice. The aim is to capture factors
that reveal people’s decision logic. Table 10 show that self-service L’Esplanade is the most
visited eating establishment on the campus. It makes sense since this destination is strategically
placed (in the middle of the school and surrounded with auditoriums). Then come the others
self-services and cafeterias. They are followed by the caravans and the restaurants.

Catering facilities located in the Rolex Learning Center (RLC) do not have many visits. Danalet
et al. (2014) explain that it is, in particular, due to the higher attractivity of the library (see
Section 2.1 and Section 2.3). Indeed eating and working areas are (nearly) melted in the RLC
and the seated capacity of the working area is about ten times bigger. Thus, activity episode
sequences measured in the library are slightly biased due to the low precision of the attractivity
measure in the library (the number of seats is used as an aggregate measure of occupation).

We present the catering destinations per period of the day (morning, lunch, afternoon, dinner,
evening) in Table 11. Lunch time is the most attractive period in average. More than one
third of the visits are made between 11 AM and 2 PM. Note that some destinations are less
visited during this period. It is the case for self-service L’Atlantide, cafeteria Satellite, cafeteria
MX or PH (others) which are destinations where it is common to take coffee breaks. Similar
observations can be done in the afternoon. Destinations that are visited out of the lunch time all
have a working space and/or additional services (e.g., coffee or tap beers). We consider now
more specifically the lunch period. As students courses usually finish at 11 AM, 12 PM and
1 PM, one can expect several peaks in the demand. Destinations are aggregated by types (see
Figure 6).

The lunch demand is separated into 3 peaks. There is one small peak between 11 AM and
12 PM because most of the self-services and restaurants only open at 11:30 AM. People reach a
catering facility during this period to avoid queues and get a table more easily. The biggest peak
is between 12 PM and 1 PM as the majority of students and people of the personnel lunch during
this period. Then the third peak between 1 PM and 2 PM concerns students that finish their
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Table 10: Observed choices per destination

Destination Nb picks

Cafeteria Cafe Le Klee 4
Self-service BC 172
Other BM 47
Cafeteria ELA 145
Cafeteria INM 13
Cafeteria MX 86
Other PH 85
Cafeteria L’Arcadie 38
Self-service L’Atlantide 146
Restaurant Le Copernic 6
Self-service Le Corbusier 73
Cafeteria Le Giacometti 182
Self-service Le Parmentier 139
Self-service Le Vinci 2
Self-service L’Esplanade 448
Self-service L’Ornithorynque 102
Caravan Pizza 65
Caravan Kebab 68
Cafeteria Satellite 142
Self-service Le Hodler 36
Restaurant Table de Vallotton 9

Figure 6: Demand peaks during lunch hours (one hour periods)
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Table 11: Choices performed depending on the time of the day

7AM-11AM 11AM-2PM 2PM-6PM 6PM-8PM 8PM-11PM Total

Cafeteria Cafe Le Klee 1 1 2 4
Self-service BC 50 69 42 11 172
Other BM 11 14 16 5 1 47
Cafeteria ELA 37 55 53 145
Cafeteria INM 2 7 4 13
Cafeteria MX 38 22 26 86
Other PH 35 16 26 6 1 84
Cafeteria L’Arcadie 11 19 8 38
Self-service L’Atlantide 72 18 56 146
Restaurant Le Copernic 6 6
Self-service Le Corbusier 73 73
Cafeteria Le Giacometti 45 56 81 182
Self-service Le Parmentier 82 55 2 139
Self-service Le Vinci 2 2
Self-service L’Esplanade 95 148 162 44 449
Self-service L’Ornithorynque 102 102
Caravan Pizza 12 35 5 13 65
Caravan Kebab 11 19 24 14 68
Cafeteria Satellite 37 14 74 11 6 142
Self-service Le Hodler 36 36
Restaurant Table de Vallotton 8 1 9

Total 457 802 579 159 11 2008

Figure 7: Durations (in minutes) of observations depending on the type of destination
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courses late and some employees. Cafeterias reach their maximum attendance during that period.
It is possibly due to the fact that some people drink a coffee after their lunch. Also, individuals
going to a restaurant do not move before 12 PM because their table is probably reserved.

The durations of activity episodes depending on the destination type is shown in Figure 7.
They have been separated into three nearly equal categories. The first one reflects short visits
(between 5 and 14 minutes). They can be interpreted as short breaks or as visits to buy a snack
or a drink. The second one represents long breaks (between 15 and 45 minutes) to perform
activities such as having lunch or spend an hour to rest. The last one stands for long activities.
One can see on the figure that visiting a restaurant may take more than 45 minutes. Also,
studying for a course or spending free time in a cafeteria can take more than an hour.

We take a look at the choices performed by some individuals (see Table 12). Civil engi-
neering students have some habits. Indeed nearly all individuals have a preference for one or
several destinations. This is also true for students from other sections and for employees. The
repetition of the same catering destination choice over time for a same individual motivates to
consider habits.

According to the literature review, the distance to walk has a significant impact in both route and
destination choices. On the campus, if a student finishes his course at the extreme east (CE) and
decides to lunch at the extreme southwest (BC) he has to walk about 1200 meters if he takes the
shortest path (only 700 in Euclidean distance). By looking at Euclidean distances, students and
employees have a preference for short distances but may change their habits sometimes. Indeed
the average Euclidean distance covered is 110 meters (109 for students and 100 for employees).

Since a pedestrian network is available, realistic shortest path can be calculated between two
destinations. They are more realistic than Euclidean distances. We compare the Euclidean and
real distances covered to reach the chosen destination.The Euclidean distances reduces all the
non-null paths (i.e. paths shorter than 20 meters are omitted) by 90% in average compared to
paths calculated with a weighted shortest path algorithm (the complete algorithm is available
in Danalet et al. (2014)). However, the standard deviation is high (around 100%). Using such
algorithms takes into account the anisotropy of the place (Kim and Hespanha, 2003). Figures 8
and 9 represent the distribution of Euclidean and real distances walked by the individuals.

The trends are similar as before except that the distances to reach a catering destination are
longer. In average, both students and employees walk 175 meters to visit an eating establishment.
5% of individuals cover a distance longer than 500 meters to reach their catering destination.
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Table 12: Choices performed by civil engineering students: the bold numbers represent the most
frequently chosen destination of one individual and the italic numbers, its first chosen
destination.
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Figure 8: Distribution of Euclidean distances

Figure 9: Distribution of real distances
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This weighted shortest path algorithm does not provide distances between all points of the
pedestrian network. This is due to the coding of the network (some doors need an access card
and are assumed to be closed). This study uses a sample of 4,5 millions paths. About 10% of
the possible distances are not calculated. However the distance to reach the chosen catering
destination is always available.

We also consider the weather. We have daily data collected from Meteosuisse. During the case
study, the average temperature was 15 Celsius degrees and two third of the days were shiny. It
was a typical swiss spring.

Individual’s choices are related to two important factors: the distance and the habits. Indeed
people seem to prefer a catering destination close to their previous location and a destination
they know well (they have already visited). Also, students and employees do not necessary visit
a destination for the purpose of eating. More characteristics such as offering work places, coffee
or tap beers may influence people’s choice of catering destination.

4.4 Modelling of destination choice

4.4.1 Description of the models

Considering the points highlighted in Section 4.3, we develop linear in parameter Multinomial
Logit Models. Before we describe these models in detail, one needs to define the dynamic
variables. We decide to focus the dynamic on the lunch hours since it is the time of the day
when catering destinations are the most frequented (40% of activity episodes) and when the
purpose of the visit is obviously to have lunch.

One proposes that the previous choice is the previous catering destination visited by a same
individual during the lunch period (11:30AM to 2PM). It means that the time interval between
the activity episode sequences varies. It can be one day or weeks depending on the availability
of information and the frequency of observations. Also, if this individual visits a catering
destination out of the lunch hours, it is not considered as a previous choice.

Similarly, the first choice is the first catering destination ever visited by this same individ-
ual during the lunch period. Finally, we propose to use the most frequent choice to describe one
individual average behavior among the past period (see Section 3.2.2). The most frequent choice
stands for the most visited catering destination, during lunch time, before the actual choice. In
the event of a tie, the most visited destination is randomly selected among the destinations with
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the same number of visits.

We consider three main variants as defined in Table 13 and we also add two submodels to
the dynamic with agent effect correction’s variant.

1. A static model with no previous choice considered at all where each observation is
independent;

2. A dynamic strict exogenous model where the previous choice is considered but with the
assumption that individuals have no memory on short observation periods (thus, the choice
is based on exogenous factors within a short period, but on endogenous determinants over
time);

3. Two dynamic models with panel data and agent effect correction. The previous choice
is considered and two approaches are used to correct for agent effect issue using the
principles described in Section 3.2.2:

a) The first choice is considered to correct the agent effect;
b) The first and most frequent choices are considered to correct the agent effect;

Table 13: Definition of static and dynamic models for the case study

Static model Dynamic strict exogenous model Dynamic models with agent effect correction

First choice First and most frequent choices

ρ = 0 ρ , 0 ρ , 0 ρ , 0
α0 = 0 α0 = 0 α0 , 0 α0 , 0
α2 = 0 α2 = 0 α2 = 0 α2 , 0
σ = 0 σ = 0 σ , 0 σ , 0

There are 21 catering destinations on the EPFL campus, thus 21 utility functions. Table 14
clarifies the variables introduced in the models. We estimate the parameters for all four models
using Python Biogeme software (Bierlaire, 2003; Bierlaire and Fetiarison, 2009). One shows a
summary of the results in Table 15. The complete results (also containing Alternative Specific
Constants (ASC) and σ values) and one typical utility function are available in Appendices A
and B.

The values and signs of the short-term parameters are similar between all models (except
for the price, see below). The static model is the restricted version of the dynamic strict exoge-
nous model which also is the restricted version of both dynamic with agent effect correction
models (see Table 13). The addition of the previous lunch’s choice (at time t − 1) decreases the
t-test of the parameters related to the choice of the catering destination at time t. A similar effect
is observed with the addition of both agent effect issue’s corrections. As suggested by Pirotte
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Table 14: Specification table: each variable has possibly 21 different values. The time periods
are the following: morning hours are from 7 AM to 11:29 AM, lunch hours are from
11:30 AM to 2 PM, afternoon hours are from 2 PM to 6 PM, dinner hours are from
6 PM to 8 PM, night hours are from 8 PM to 11 PM. If the time period constraint is
not respected, the variable is 0. Distances are measured in meters. A good weather
stands for a dry day and at least a maximum daily temperature of 20 Celsius degrees.
βDIS T ANCE_LUNCHTYPE and βEVALUAT IONTYPE are type specific parameters (see Table 4).
All the others are generic. Some variables are not available and take the value of -1 in
the dataset. αFIRS T_CHOICE, αMOS T_CHOS EN and σd are only considered in the dynamic
with agent effect correction models. Finally, ρPREVIOUS _CHOICE is null in the static
model (see Table 13).

Parameter Variable Variable description Time period

AS Cd 1 -

βDIS T_LUNCHTYPE lunch_distance
distance from the previous activity episode lunch
0 otherwise

βDIS T_MORNING morning_distance
distance from the previous activity episode morning
0 otherwise

βDIS T_AFT ERNOON a f ternoon_distance
distance from the previous activity episode afternoon
0 otherwise

βNO_DIS T ANCE_AV distance_not_av
1 if no distance is available
0 otherwise

βEVALUAT IONTYPE evaluation_survey
quality evaluation on a [1;6] scale lunch
0 otherwise

βPRICE_S TUDENT price_min_student
price for the cheapest hot meal if student lunch
0 otherwise

βPRICE_EMPLOYEE price_min_employee
price for the cheapest hot meal if employee lunch
0 otherwise

βT AP_BEER beer_av
1 if tap beer is available > lunch
0 otherwise

βDINNER dinner_av
1 if dinner is available dinner
0 otherwise

βCAPACITY_T ERRACE capacity_terrace
outside number of seats if the weather is good lunch
0 otherwise

βCAPACITY_INS IDE capacity_inside
inside number of seats lunch
0 otherwise

ρPREVIOUS _CHOICE previous_choice
1 if the destination was the previous destination lunch
0 otherwise

αFIRS T_CHOICE f irst_choice
1 if the destination was the first destination lunch
0 otherwise

αMOS T_CHOS EN most_ f req_choice
1 if the destination was the most frequented lunch
0 otherwise

σd 1 -
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(1996) (see Section 3.2.2), long-term parameters measure the variability within individuals and
thus alleviate the weight of short-term significants (i.e., reduce their t-tests).

Table 15: Table of estimates. Number of observations = 1867

Static Strict exo First choice First and most freq

Parameters Value t-test Value t-test Value t-test Value t-test

βDIS T_LUNCH_CAFET -0.00703 -16.69 -0.00633 -14.81 -0.00398 -8.03 -0.00367 -7.41
βDIS T_LUNCH_RES T -0.00276 -2.18 -0.00256 -2 -0.00191 -1.11 -0.00225 -1.42
βDIS T_LUNCH_S ELF -0.00646 -19.99 -0.00578 -17.37 -0.00413 -10.88 -0.00375 -9.99
βDIS T_MORNING -0.00379 -5.97 -0.00395 -6.17 -0.00286 -3.65 -0.0029 -3.58
βDIS T_AFT ERNOON -0.000606 -1.31 -0.00103 -2.2 -0.000782 -1.28 -0.00106 -1.74
βNO_DIS T ANCE_AV -4.89 -13.84 -4.5 -12.93 -3.72 -8.64 -3.38 -8.31
βEVALUAT ION_CAFET 1.79 9.98 1.76 9.53 2.21 9.03 2.02 8.84
βEVALUAT ION_S ELF 1.88 9.66 1.84 9.19 2.26 8.61 2.09 8.38
βPRICE_S TUDENT -0.0681 -2.07 -0.057 -1.7 -0.00686 -0.14 -0.00488 -0.09
βPRICE_EMPLOYEE -0.00537 -0.18 0.000645 0.02 0.03 0.65 0.0618 1.18
βT AP_BEER 0.669 3.62 0.601 3.24 0.806 3.14 0.766 3
βDINNER 0.943 3.35 0.977 3.47 0.633 1.7 0.654 1.78
βCAPACITY_T ERRACE 0.00162 1.84 0.00152 1.71 0.00212 2.03 0.0012 1.11
βCAPACITY_INS IDE 0.00277 1.29 0.00308 1.43 0.00405 1.54 0.00647 2.37
ρPREVIOUS _CHOICE 0 0 1.78 17.31 0.424 3.14 -0.118 -0.76
αMOS T_FREQ_CHOICE 0 0 0 0 0 0 1.79 14.27
αFIRS T_CHOICE 0 0 0 0 1.23 10.65 0.985 8.16

L(0) −5035.429 −5035.429 −5035.429 −5035.429
L(β̂) −3238.926 −3101.563 −2428.28 −2335.75
ρ2 0.357 0.384 0.518 0.536

In each model, the opening hours are considered as the availability of the destination (closed
catering destinations cannot be visited even if pedestrians could technically reach them). We
examine parameters’ sign and t-test to describe the results of the models. Capacities (number of
seats) of terraces and inside spaces have a positive parameter sign. It means that people have
a preference for catering destinations with a bigger capacity. It makes sense since having an
important number of places increases the chance to find a seat. Also, the destinations with
terraces are more likely to be visited when the weather is sunny.

The distance from the previous activity episode is significant in the choice of an eating es-
tablishment. The sign is negative independently of the period of the day which represents the
fact that people prefer a close destination. In the morning, the main activity that can be performed
in a catering destination is having a coffee. In the afternoon, it can be several things like having
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a coffee, working or drinking a beer. The comparison between the parameters of both these time
periods shows that individuals prefer to walk less in the morning than in the afternoon. A possible
explanation is that coffee is available nearly everywhere but descent workspaces or tap beers are
much rarer so people accept to travel longer. Another possible reason is that people tend to have
a coffee next to their following activity episode (instead of next to the previous activity episode).
This has not been explored yet. Other possible explanations include looking for a sunny terrace or
for a place selling ice creams, since the data collection took place in the beginning of the summer.

At lunch time, the distance covered from the last activity episode depends on the type of
destination chosen. For example, individuals are more likely to walk when going to a restaurant
as the choice set is small for this destination type (only two restaurants on campus). On the other
hand, students and employees prefer a near self-service or cafeteria compared to a far one. The
fact that this kind of destinations is distributed everywhere on the campus can be an explanation.

Note that individuals visiting a caravan or another catering destinations (PH and BM) are
less sensitive to distance (i.e., the parameters are not significant). It is not a surprise since those
places have their own distinctive offers. People accept to cover more distance if they want a
specific type of meal. The parameter accounting for the non-availability of distances is negative
as well. It means that catering destinations that are the least connected to the network are less
likely to be visited.

The minimum price for a hot meal is not significant in dynamic models for both students
and employees but we decide to keep it anyway because we expected it to be significant. As
explained in Section 3.2.2, it may be the fact that the price is considered as a short-term determi-
nant in our models. Moreover, prices have low variability on the campus; this also explains why
cost is not significant in our models. We give an explanation to these parameters anyway. Price
has a negative sign for students. It makes sense as they are not willing to spend 25 CHF to go to
the restaurants and prefer catering destinations with 7 CHF meals or caravans. Employees look
for eating establishments with higher prices because the price is connected with the food quality.
Also, working people earn a salary and bills can be attributed to the company expenses.

Evaluations have a positive sign for both cafeterias and self-services. It means that individuals
choose a cafeteria or a self-service as a destination depending on the average quality of the
offer. Evaluations are not significant for caravans and restaurants. Eating establishment that
offer dinner are more likely to be visited between 6 PM and 8 PM.

The availability of tap beer after midday increases the utility of a catering destination. In-
deed, some individuals may want to relax more than work in the afternoon and the evening.

37



Destination Choice Model including panel data using WiFi localization in a pedestrian facility April 2015

Only three destinations offer tap beers on the campus; the well-known Satellite bar, the cafeteria
of the Rolex Learning Center (Klee) and cafeteria L’Arcadie.

Habits are significant in all dynamic models. The previous choice made by people at lunch time
has a parameter with a positive sign. It means that students and employees have some habits
when choosing for an eating destination. As an example, if the previous time they ate on the
campus for lunch, they chose to eat at self-service Le Corbusier, they are more likely to pick this
alternative again. Also, the correcting terms have a positive sign and a strong t-test. However,
the previous choice becomes non-significant with the double agent effect correction which may
mean that average behavior among the observation period is stronger as the previous choice
(also short-term, long-term effects as explained above). We explore this topic in future research.

The most robust explanatory variables are the distances and the previous choice (except for the
model with the double agent effect correction). Prices or services availability are less robust
determinants. Probably because prices are relatively cheap and uniform (except for restaurants)
and because a same type of catering destinations usually proposes the same services in every
destinations. Also, both corrections of agent effect seem to improve the models. We verify this
impression in the next chapter (see Section 4.4.2).

4.4.2 Comparison of the models

All four models shown in Section 4.4.1 have close values of parameters. We compare these
models to find which one fits the data the best. A log-likelihood ratio test is performed. We
can use this test because the models are nested. The static model is the restricted model of
the dynamic strict exogenous model which is the restricted model of both dynamic with panel
data and agent effect issue correction models. Also, the model considering the first choice is
the restricted version of the one accounting for both the first and most frequent choices. The
statistic

− 2(L(β̂R) − L(β̂U)) (14)

is χ2 distributed, with degrees of freedom equal to

KU − KR (15)

with K, the number of parameters of each model (Unrestricted and Restricted). If the result
of Equation (14) is bigger than the percentile of the chi square distribution, then we can reject
the null hypothesis (at a chosen level of confidence) and the unrestricted model is preferred
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to the restricted one. We perform the log-likelihood ratio test on each model according to the
specification made in Table 13. Table 16 presents the results. Both models, accounting for
panel nature of data and correcting agent effect, are statistically better (with more than 95%
confidence) than the second one which is statistically better than the static one as well.

Table 16: Table of likelihood ratio test. DSE stands for Dynamic Strict Exogenous, DAEC
stands for Dynamic with Agent Effect Correction.

Static DSE DAEC first choice DAEC first and most frequent choices

L(β̂) -3238.926 -3101.563 -2428.280 -2335.750
Nb of parameters 34 35 56 57

Loglikelihood ratio test
Static vs DSE:−2(−3238.9 + 3101.5) = 275 > 3.84
DSE vs AEC (first choice):−2(−3101.5 + 2428.2) = 1347 > 33.92
DAEC (first choice) vs DAEC (first and most frequent choices):−2(−2428.2 + 2335.7) = 185 > 3.84

4.5 Validation

We perform an aggregated validation on our models. The dataset is separated into two sub-
samples: one to calibrate the models, the second one to simulate the future destination choices
and compare the output of the models with the actual choices. The first sample represents
the past choices of individuals and the second sample contains their most recent observation.
Basically we use people’s past choices to estimate the models (first sample) and we forecast
their most recent observation of a destination to have lunch (second sample). People with only
one observation are removed because they do not fulfill the dynamic conditions (thus the dataset
is not exactly the same that the one used for estimation in Table 15. We keep 1379 observations
to calibrate the models and 121 to simulate future choices). An example of sample separation is
given on Figure 10.

Dynamic models with agent effect correction are simulated as Mixed Logit Models because they
have two error terms and one of them is normally distributed (see Section 3.2.2) whereas both
static and dynamic strict exogenous models only have a single error term and are thus simulated
as Multinomial Logit Models. Table 17 summarizes the results.

The trends are similar between observations and estimated choices. These results are positive
since they show that even a basic static model simulates reasonable forecasting on a small
validation sample. The errors mainly come from the estimation of self-services. The number of
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Figure 10: Separation of the total sample for calibration and simulation: the black dots represent
the activity episodes used for calibration whereas gray dots represent activity episodes
used for simulation.

Table 17: Validation of the models. Observed and estimated choices performed by 121 individu-
als on their last activity episode

Observed
Predicted

Static Strict exo First choice First and most freq

Nb % Nb % Nb % Nb % Nb %

Cafeteria Cafe Le Klee 1 0.6% 0 0.1% 0 0.1% 1 1% 2 1.9%
Self-service BC 11 6.3% 7 6.2% 6 5% 6 5.1% 6 5%
Other BM 1 0.6% 3 2.3% 2 1.9% 2 1.2% 2 2.1%
Cafeteria ELA 9 5.1% 6 4.9% 6 4.7% 6 4.6% 6 4.8%
Cafeteria INM 0 0% 1 0.7% 1 0.6% 1 1% 1 1.1%
Cafeteria MX 4 2.3% 5 3.8% 4 3.7% 4 3.1% 4 3%
Other PH 3 1.7% 4 3% 3 2.8% 2 1.9% 2 1.9%
Cafeteria L’Arcadie 4 2.3% 1 0.9% 1 0.9% 1 0.9% 2 1.5%
Self-service L’Atlantide 3 1.7% 7 5.5% 6 5% 5 4.1% 3 2.5%
Restaurant Le Copernic 1 0.6% 1 0.9% 2 1.3% 2 1.4% 2 1.3%
Self-service Le Corbusier 5 2.9% 13 10.4% 10 8.3% 11 9% 11 8.7%
Cafeteria Le Giacometti 10 5.7% 8 6.6% 9 7.5% 9 7% 10 8.1%
Self-service Le Parmentier 10 5.7% 13 11% 14 11.5% 16 13.5% 12 9.9%
Self-service Le Vinci 1 0.6% 0 0.2% 0 0.2% 0 0.2% 0 0.2%
Self-service L’Esplanade 21 12% 18 14.6% 19 15.3% 18 14.6% 19 15.8%
Self-service L’Ornithorynque 15 8.6% 16 13.5% 18 14.8% 18 14.9% 18 14.6%
Caravan Pizza 7 4% 3 2.8% 4 3% 3 2.7% 4 3.6%
Caravan Kebab 4 2.3% 3 2.7% 3 2.7% 4 3.6% 3 2.3%
Cafeteria Satellite 3 1.7% 4 3.5% 4 3.6% 4 3.4% 6 4.8%
Self-service Le Hodler 7 4% 7 5.5% 7 6% 7 5.8% 7 5.8%
Restaurant Table de Vallotton 1 0.6% 1 1% 1 0.9% 1 1% 1 1.1%

destination type’s choices (e.g., Self-service, cafeteria. . . ) is accurate for each model. It means
that our models are good at forecasting the destination type choice but then are less accurate
to select a specific destination. The reason could be that the variability of services’ availability
for destinations of a same type is narrow. Also, the fact that catering destinations are relatively
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evenly distributed on the campus (see Figure 5) does that individuals usually have equidistant
possible destinations of a same type. This latter point is especially true for self-services.

We expected the accuracy to be better for both dynamic models with panel data and agent
effect correction as they are statistically better than both other models (see Section 4.4.2) but
according to Table 17, it seems that it is not the case. We propose to use a least squares’ method
to measure objectively the accuracy of each model:

S m =

21∑
d=1

(Od − Ed,m)2 (16)

where Od is the percentage of Observations for destination d and Ed,m is the expected number of
visitors based on the choice probabilities for destination d and model m. The best model is the
one that minimizes the least squares’ method (S m). The results are shown on Table 18.

Table 18: Least squares’ method. DAEC stands for Dynamic with Agent Effect Correction

Static Strict exogenous DAEC first choice DAEC first and most frequent choices

S static = 104 S strict_exogenous = 87 S f irst_choice = 112 S f irst_and_most_ f requent_choices = 75

The gap between each model is small. The one that minimizes the difference between ob-
servations and estimated choices is the dynamic with both agent effect corrections (first and
most frequent choices) which is also the one that fits the data the best (Section 4.4.2). The
static and strict exogenous models show accurate forecasting as well. The “worst” model is the
dynamic with only one agent effect correction. We think that the first choice may not be very
representative of individuals’ habits on short periods. Also, we emphasize some limitations that
require further research:

1. The fact that one only considers dynamic during lunch hours does that some individuals
do not have any prior and are thus removed from the dataset. It represents about one fourth
of the total sample;

2. The first and most frequent choices are based on only 3 months of observations. Their
efficiency at correcting agent effect may not be good (e.g., the fact that the first or most
frequent choices fit the actual choice may be due to pure luck);

3. We suggest that lunch and out of lunch hours’ observations are studied separately to have
a clearly defined dynamic;

Despite of these highlighted problems, one considers that our models are successfully vali-
dated.
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5 Conclusion

We propose a framework to model pedestrians destination choice from WiFi localization. One
uses Danalet et al. (2014) method to generate candidates of activity episode sequences from
WiFi measurements, locations of activities and prior information.

This paper describes a full methodology to develop a pedestrian destination choice model
in a multi-modal facility from activity episode sequences. One activity type is selected and
all the possible destinations to perform this activity are considered. The attributes to explain
destination choice have been collected. These attributes are either sequence specific (e.g., ID,
category, day), activity episode specific (e.g., location, start and end times) or destination specific
(e.g., opening hours, prices).

These attributes are associated with additional determinants (e.g., habits, distance). Panel
nature of data and how to correct agent effect issue are accounted for using Wooldridge (2002)
approach. Three types of models are developed: a static model, a dynamic strict exogenous
model and two dynamic with panel data and agent effect correction models (thus, a total of
four models). They reveal the importance of past choices (the routine of an individual). We
emphasizes that taking into account the previous choice and correcting for agent effect issue
contribute to improve significantly the fit of a destination choice model for pedestrians but that a
static model already performs accurate forecasts.

We present a case study on the EPFL campus where we generate, comment and validate
our methodology. Eating is considered as the activity type. 21 eating establishments represent
the destination choices for this activity type. These destinations are decomposed into types (i.e.,
cafeteria, self-service, restaurant, caravan or other) depending on the services they propose.

Our models reveal three major points. First, individuals prefer destinations close to their
previous activity. It means that they reduce the distance to walk for reaching an eating es-
tablishment. This is especially observed when people need to chose for a destination to have
coffee in the morning and lunch in a cafeteria or a self-service. Second, the choice of a catering
destination at time t is connected to the previous catering choice performed at time t − 1. Indeed,
if one eating establishment has been visited before it is more likely to be chosen again. The
results show that accounting for panel nature of data and correcting agent effect lead to accurate
estimations. Third, ancillary services (e.g., selling sandwiches, having a fidelity card. . . ) do not
seem to influence people’s choice because destinations of a same type all propose more or less
the same range of services.
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In future works, one should improve the methodology. It has revealed some limitations about
the detection of points of interest (see Section 2.3). Also, as a first approach, we assumed in
the case study that time interval between consecutive choices was undefined (mainly because
of the nature of data). Time between activity episode sequences should be clearly defined to
measure the impact of time. The choice of a destination performed 2 weeks or 2 years before
the actual choice may not have the same impact (see Section 4.4.1). We should also consider
more than one candidate of activity episode sequences since the input is generated considering a
Bayesian approach (Danalet et al., 2014). It involves using more than one candidate per person
and including a measurement equation.

Destination choice models usually consider Space Syntax parameters (see Section 2.2.1). We
did not implement such determinants in our models but we suggest that they may be significant.
Furthermore, we should consider applying the methodology to develop a destination choice
model to a multi-modal facility context. Railway stations, airports, stores or public buildings are
as much new opportunities to understand and model pedestrian destination choice. Forecasting
with the estimated models (e.g., what happens if a new destination opens?) may be explored as
well.
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A Strict utility functions

Vd = AS Cd + βDIS T ANCE_LUNCHTYPE ∗ lunch_distance_d

+ βDIS T ANCE_MORNING ∗ morning_distance_d

+ βDIS T ANCE_AFT ERNOON ∗ a f ternoon_distance_d

+ βNO_DIS T ANCE_AV ∗ distance_not_av_d

+ βEVALUAT IONTYPE ∗ evaluation_survey_2013_d

+ βPRICE_S TUDENT ∗ lunch_price_min_student_d

+ βPRICE_EMPLOYEE ∗ lunch_price_min_employee_d

+ βT AP_BEER_AFT ER_LUNCH ∗ beer_a f ter_lunch_ f ilter_d

+ βDINNER ∗ dinner_ f ilter_d

+ βMET EO_T ERRACE ∗ meteo_terrace_ f ilter_d

+ βCAPACITY_INS IDE ∗ cap_inside_ f ilter_d

+ ρPREVIOUS _CHOICE ∗ previous_choice_ f ilter_d

+ αMOS T_FREQUENT_CHOICE ∗ most_ f requent_choice_ f ilter_d

+ αFIRS T_CHOICE ∗ f irst_choice_ f ilter_d +N(0, σ2
d)

(17)

VEspla = AS CEspla + βDIS T ANCE_LUNCHS ELF_S ERVICE ∗ lunch_distance_Esplanade

+ βDIS T ANCE_MORNING ∗ morning_distance_Esplanade

+ βDIS T ANCE_AFT ERNOON ∗ a f ternoon_distance_Esplanade

+ βNO_DIS T ANCE_AV ∗ distance_not_av_Esplanade

+ βEVALUAT IONS ELF_S ERVICE ∗ evaluation_survey_2013_Esplanade

+ βPRICE_S TUDENT ∗ lunch_price_min_student_Esplanade

+ βPRICE_EMPLOYEE ∗ lunch_price_min_employee_Esplanade

+ βT AP_BEER_AFT ER_LUNCH ∗ beer_a f ter_lunch_ f ilter_Esplanade

+ βDINNER ∗ dinner_ f ilter_Esplanade

+ βMET EO_T ERRACE ∗ meteo_terrace_ f ilter_Esplanade

+ βCAPACITY_INS IDE ∗ cap_inside_ f ilter_Esplanade

+ ρPREVIOUS _CHOICE ∗ previous_choice_ f ilter_Esplanade

+ αMOS T_FREQUENT_CHOICE ∗ most_ f requent_choice_ f ilter_Esplanade

+ αFIRS T_CHOICE ∗ f irst_choice_ f ilter_Esplanade +N(0, σ2
Esplanade)

(18)
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B Detailed results

Table 19: Static model

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC_ARC -1.47 0.318 -4.60 0.00
2 ASC_ATL -0.966 0.325 -2.97 0.00
3 ASC_BC -0.369 0.397 -0.93 0.35
4 ASC_BM 0.666 0.324 2.06 0.04
5 ASC_COP 1.03 0.590 1.74 0.08
6 ASC_COR -0.235 0.141 -1.67 0.10
7 ASC_ELA -1.33 0.435 -3.06 0.00
8 ASC_GIA 0.204 0.392 0.52 0.60
9 ASC_HOD -0.130 0.393 -0.33 0.74

10 ASC_INM -2.92 0.608 -4.81 0.00
11 ASC_KEB 0.770 0.247 3.11 0.00
12 ASC_KLE -3.34 0.647 -5.17 0.00
13 ASC_MX -1.34 0.351 -3.81 0.00
14 ASC_ORN -0.797 0.134 -5.93 0.00
15 ASC_PAR -0.381 0.268 -1.42 0.15
16 ASC_PH 1.36 0.323 4.23 0.00
17 ASC_PIZ 0.980 0.237 4.14 0.00
18 ASC_SAT -1.32 0.473 -2.79 0.01
19 ASC_VAL 1.49 0.734 2.02 0.04
20 ASC_VIN -4.02 0.715 -5.62 0.00
21 BETA_CAPACITY_INSIDE 0.00277 0.00257 1.08 0.28
22 BETA_DINNER 0.943 0.289 3.26 0.00
23 BETA_DISTANCE_AFTERNOON -0.000606 0.000545 -1.11 0.27
24 BETA_DISTANCE_LUNCH_CAF -0.00703 0.000506 -13.88 0.00
25 BETA_DISTANCE_LUNCH_REST -0.00276 0.00128 -2.16 0.03
26 BETA_DISTANCE_LUNCH_SELF -0.00646 0.000418 -15.45 0.00
27 BETA_DISTANCE_MORNING -0.00379 0.000826 -4.59 0.00
28 BETA_EVALUATION_CAFET 1.79 0.0929 19.26 0.00
29 BETA_EVALUATION_SELF 1.88 0.125 15.04 0.00
30 BETA_METEO_TERRACE 0.00162 0.000878 1.85 0.07
31 BETA_NO_DISTANCE_AV -4.89 0.420 -11.66 0.00
32 BETA_PRICE_EMPLOYEE -0.00537 0.0333 -0.16 0.87
33 BETA_PRICE_STUDENT -0.0681 0.0369 -1.85 0.06
34 BETA_TAP_BEER_AFTER_LUNCH 0.669 0.180 3.71 0.00

Summary statistics
Number of observations = 1867
Number of estimated parameters = 34

L(β0) = −5035.429
L(β̂) = −3238.926

−2[L(β0) − L(β̂)] = 3593.005
ρ2 = 0.357
ρ̄2 = 0.350
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Table 20: Dynamic strict exogenous model

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC_ARC -1.44 0.316 -4.55 0.00
2 ASC_ATL -0.882 0.330 -2.67 0.01
3 ASC_BC -0.334 0.402 -0.83 0.41
4 ASC_BM 0.760 0.333 2.28 0.02
5 ASC_COP 1.02 0.579 1.77 0.08
6 ASC_COR -0.221 0.155 -1.43 0.15
7 ASC_ELA -1.22 0.438 -2.77 0.01
8 ASC_GIA 0.297 0.399 0.74 0.46
9 ASC_HOD -0.0223 0.396 -0.06 0.96

10 ASC_INM -2.74 0.606 -4.52 0.00
11 ASC_KEB 0.867 0.253 3.43 0.00
12 ASC_KLE -3.12 0.648 -4.81 0.00
13 ASC_MX -1.28 0.348 -3.67 0.00
14 ASC_ORN -0.851 0.146 -5.82 0.00
15 ASC_PAR -0.399 0.271 -1.47 0.14
16 ASC_PH 1.53 0.332 4.60 0.00
17 ASC_PIZ 0.974 0.234 4.16 0.00
18 ASC_SAT -1.20 0.484 -2.48 0.01
19 ASC_VAL 1.59 0.750 2.12 0.03
20 ASC_VIN -3.74 0.716 -5.22 0.00
21 BETA_CAPACITY_INSIDE 0.00308 0.00259 1.19 0.24
22 BETA_DINNER 0.977 0.287 3.41 0.00
23 BETA_DISTANCE_AFTERNOON -0.00103 0.000549 -1.87 0.06
24 BETA_DISTANCE_LUNCH_CAF -0.00633 0.000512 -12.35 0.00
25 BETA_DISTANCE_LUNCH_REST -0.00256 0.00125 -2.05 0.04
26 BETA_DISTANCE_LUNCH_SELF -0.00578 0.000430 -13.44 0.00
27 BETA_DISTANCE_MORNING -0.00395 0.000837 -4.72 0.00
28 BETA_EVALUATION_CAFET 1.76 0.0938 18.78 0.00
29 BETA_EVALUATION_SELF 1.84 0.126 14.54 0.00
30 BETA_METEO_TERRACE 0.00152 0.000893 1.71 0.09
31 BETA_NO_DISTANCE_AV -4.50 0.395 -11.40 0.00
32 BETA_PRICE_EMPLOYEE 0.000645 0.0342 0.02 0.98
33 BETA_PRICE_STUDENT -0.0570 0.0376 -1.52 0.13
34 BETA_TAP_BEER_AFTER_LUNCH 0.601 0.180 3.34 0.00
35 RHO_PREVIOUS_CHOICE 1.78 0.109 16.38 0.00

Summary statistics
Number of observations = 1867
Number of estimated parameters = 35

L(β0) = −5035.429
L(β̂) = −3101.563

−2[L(β0) − L(β̂)] = 3867.733
ρ2 = 0.384
ρ̄2 = 0.377
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Table 21: Dynamic model with agent effect correction (first choice only): here the results with
250 draws (results are similar with more draws).

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ALPHA_FIRST_CHOICE 1.23 0.209 5.90 0.00
2 ASC_ARC -5.87 1.22 -4.81 0.00
3 ASC_ATL -2.89 0.760 -3.80 0.00
4 ASC_BC -2.01 0.680 -2.96 0.00
5 ASC_BM -1.95 0.945 -2.06 0.04
6 ASC_COP -0.679 1.28 -0.53 0.59
7 ASC_COR -0.470 0.332 -1.42 0.16
8 ASC_ELA -1.90 0.597 -3.19 0.00
9 ASC_GIA -0.00900 0.492 -0.02 0.99

10 ASC_HOD -0.135 0.494 -0.27 0.78
11 ASC_INM -3.70 0.993 -3.72 0.00
12 ASC_KEB 1.45 0.296 4.89 0.00
13 ASC_KLE -3.52 1.16 -3.03 0.00
14 ASC_MX -4.39 0.688 -6.38 0.00
15 ASC_ORN -1.17 0.251 -4.68 0.00
16 ASC_PAR -0.630 0.293 -2.15 0.03
17 ASC_PH -1.24 0.988 -1.25 0.21
18 ASC_PIZ 1.26 0.396 3.18 0.00
19 ASC_SAT -2.17 0.657 -3.30 0.00
20 ASC_VAL 0.672 1.56 0.43 0.67
21 ASC_VIN -5.65 3.82 -1.48 0.14
22 BETA_CAPACITY_INSIDE 0.00405 0.00280 1.45 0.15
23 BETA_DINNER 0.633 0.354 1.79 0.07
24 BETA_DISTANCE_AFTERNOON -0.000782 0.000643 -1.22 0.22
25 BETA_DISTANCE_LUNCH_CAF -0.00398 0.000653 -6.10 0.00
26 BETA_DISTANCE_LUNCH_REST -0.00191 0.00150 -1.27 0.20
27 BETA_DISTANCE_LUNCH_SELF -0.00413 0.000510 -8.09 0.00
28 BETA_DISTANCE_MORNING -0.00286 0.000945 -3.03 0.00
29 BETA_EVALUATION_CAFET 2.21 0.161 13.75 0.00
30 BETA_EVALUATION_SELF 2.26 0.204 11.07 0.00
31 BETA_METEO_TERRACE 0.00212 0.00107 1.97 0.05
32 BETA_NO_DISTANCE_AV -3.72 0.561 -6.62 0.00
33 BETA_PRICE_EMPLOYEE 0.0300 0.0491 0.61 0.54
34 BETA_PRICE_STUDENT -0.00686 0.0514 -0.13 0.89
35 BETA_TAP_BEER_AFTER_LUNCH 0.806 0.256 3.14 0.00
36 RHO_PREVIOUS_CHOICE 0.424 0.161 2.63 0.01
37 SIGMA_ARC 4.34 0.752 5.77 0.00
38 SIGMA_ATL 2.04 0.285 7.15 0.00
39 SIGMA_BC 2.25 0.402 5.61 0.00
40 SIGMA_BM 4.23 0.806 5.25 0.00
41 SIGMA_COP 2.76 1.07 2.57 0.01
42 SIGMA_COR 1.09 0.377 2.88 0.00
43 SIGMA_ELA -1.33 0.285 -4.65 0.00
44 SIGMA_GIA 1.19 0.107 11.18 0.00
45 SIGMA_HOD 0.750 0.602 1.24 0.21
46 SIGMA_INM 1.64 0.514 3.19 0.00
47 SIGMA_KEB 0.806 0.407 1.98 0.05
48 SIGMA_KLE 1.38 0.551 2.51 0.01
49 SIGMA_MX 2.47 0.375 6.58 0.00
50 SIGMA_ORN 0.921 0.230 4.01 0.00
51 SIGMA_PAR -1.39 0.338 -4.12 0.00
52 SIGMA_PH 3.98 0.680 5.85 0.00
53 SIGMA_PIZ -1.78 0.615 -2.90 0.00
54 SIGMA_SAT 1.76 0.281 6.27 0.00
55 SIGMA_VAL -1.61 1.01 -1.59 0.11
56 SIGMA_VIN -2.26 2.11 -1.08 0.28

Summary statistics
Number of observations = 1867
Number of estimated parameters = 56

L(β0) = −5035.429
L(β̂) = −2428.280

−2[L(β0) − L(β̂)] = 5214.299
ρ2 = 0.518
ρ̄2 = 0.507

50



Destination Choice Model including panel data using WiFi localization in a pedestrian facility April 2015

Table 22: Dynamic model with agent effect correction (first and most frequent choices): here
the results with 250 draws (results are similar with more draws).

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ALPHA_FIRST_CHOICE 0.985 0.201 4.90 0.00
2 ALPHA_MOST_CHOSEN 1.79 0.162 11.04 0.00
3 ASC_ARC -5.70 1.45 -3.94 0.00
4 ASC_ATL -2.72 0.828 -3.28 0.00
5 ASC_BC -0.966 0.646 -1.50 0.13
6 ASC_BM -1.42 0.985 -1.44 0.15
7 ASC_COP 0.833 1.15 0.72 0.47
8 ASC_COR -0.551 0.255 -2.16 0.03
9 ASC_ELA -1.02 0.568 -1.80 0.07

10 ASC_GIA 0.643 0.551 1.17 0.24
11 ASC_HOD 0.171 0.509 0.34 0.74
12 ASC_INM -2.50 0.993 -2.52 0.01
13 ASC_KEB 1.87 0.431 4.33 0.00
14 ASC_KLE -3.10 1.15 -2.70 0.01
15 ASC_MX -2.93 0.739 -3.97 0.00
16 ASC_ORN -1.10 0.244 -4.50 0.00
17 ASC_PAR -0.753 0.292 -2.58 0.01
18 ASC_PH -0.0867 0.822 -0.11 0.92
19 ASC_PIZ 1.53 0.385 3.99 0.00
20 ASC_SAT -1.57 0.751 -2.09 0.04
21 ASC_VAL 1.09 1.57 0.69 0.49
22 ASC_VIN -3.78 0.912 -4.14 0.00
23 BETA_CAPACITY_INSIDE 0.00647 0.00294 2.20 0.03
24 BETA_DINNER 0.654 0.366 1.79 0.07
25 BETA_DISTANCE_AFTERNOON -0.00106 0.000632 -1.68 0.09
26 BETA_DISTANCE_LUNCH_CAF -0.00367 0.000598 -6.14 0.00
27 BETA_DISTANCE_LUNCH_REST -0.00225 0.00145 -1.55 0.12
28 BETA_DISTANCE_LUNCH_SELF -0.00375 0.000480 -7.83 0.00
29 BETA_DISTANCE_MORNING -0.00290 0.00105 -2.75 0.01
30 BETA_EVALUATION_CAFET 2.02 0.152 13.35 0.00
31 BETA_EVALUATION_SELF 2.09 0.196 10.67 0.00
32 BETA_METEO_TERRACE 0.00120 0.00125 0.96 0.34
33 BETA_NO_DISTANCE_AV -3.38 0.540 -6.25 0.00
34 BETA_PRICE_EMPLOYEE 0.0618 0.0622 0.99 0.32
35 BETA_PRICE_STUDENT -0.00488 0.0646 -0.08 0.94
36 BETA_TAP_BEER_AFTER_LUNCH 0.766 0.253 3.03 0.00
37 RHO_PREVIOUS_CHOICE -0.118 0.188 -0.63 0.53
38 SIGMA_ARC -4.49 0.870 -5.16 0.00
39 SIGMA_ATL -2.09 0.316 -6.62 0.00
40 SIGMA_BC -1.65 0.383 -4.32 0.00
41 SIGMA_BM -3.93 0.775 -5.07 0.00
42 SIGMA_COP -1.49 0.832 -1.79 0.07
43 SIGMA_COR -1.02 0.208 -4.90 0.00
44 SIGMA_ELA 1.24 0.213 5.83 0.00
45 SIGMA_GIA -1.21 0.120 -10.13 0.00
46 SIGMA_HOD -0.192 0.572 -0.34 0.74
47 SIGMA_INM -1.35 0.560 -2.42 0.02
48 SIGMA_KEB -0.840 0.613 -1.37 0.17
49 SIGMA_KLE -1.54 0.416 -3.71 0.00
50 SIGMA_MX 1.80 0.305 5.91 0.00
51 SIGMA_ORN -0.606 0.238 -2.55 0.01
52 SIGMA_PAR 0.621 0.366 1.70 0.09
53 SIGMA_PH -3.37 0.509 -6.62 0.00
54 SIGMA_PIZ 1.90 0.594 3.20 0.00
55 SIGMA_SAT -1.67 0.291 -5.75 0.00
56 SIGMA_VAL -1.25 1.30 -0.96 0.34
57 SIGMA_VIN 0.878 0.437 2.01 0.04

Summary statistics
Number of observations = 1867
Number of estimated parameters = 57

L(β0) = −5035.429
L(β̂) = −2335.750

−2[L(β0) − L(β̂)] = 5399.357
ρ2 = 0.536
ρ̄2 = 0.525
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