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Abstract

In their daily life, individuals are frequently involved in joint decision making — situations
where several individuals have to agree on the actions they will undertake to achieve a joint
outcome. Examples in the context of mobility behavior include intra-household task allocation,
intra-household vehicle allocation, choice of the time and venue for a dinner with friends or
traveling together in the same private vehicle.

In addition to being necessary to predict joint travel and car occupancy, it has been hypothesized
that considering explicitly this kind of joint decision process for the case of leisure activities
planning might help to improve the forecasts for the choice of the leisure destination, due
to the often social nature of such activities. This research is motivated by those results, and
aims at including social behavior — including joint decision making and coordination — in a
multi-agent transport simulation in a meaningful way. To do so, an algorithm to solve a specific
game-theoretic solution concept has been designed.

This framework is used to simulate joint leisure activity location choice. A synthetic social
network, generated using the approach of Arentze et al. (2013), is used to obtain realistic
geographical distribution of social contacts. Validity of the predicted traveled distances, as
well as sensitivity of the results to the geographical properties of the social network will be
demonstrated.
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1 Introduction

In developped countries, a continuous increase of the share of trips which are performed for
leisure purposes could be observed in the last dozens of years (Schlich et al., 2004; Axhausen,
2005). This represents a challenge for travel behavior modeling, as those trips are much more
difficult to capture than commuting trips: they are performed more sporadically, and data about
those trips is much more difficult to collect. Understanding better how destination choice for
leisure trips is made is therefore essential to improve the accuracy of those forecasts. This
increase in leisure travel has been anticipated early, and the social nature of such travel already
hypothesized, for instance by Salomon (1985), who stated that “one particular type of travel,

that for recreational and social purpose, may increase when more leisure time is available”.
This pronostic was later confirmed, for instance by Stauffacher et al. (2005), who analyzed the
motives behind leisure activities, using the results of a 12 weeks leisure travel diary survey. They
found social contact to be the most important, and that in addition respondents travelled with
social contacts for more than 70% of leisure activities. This fact, between others, generated a
growing interest in the social dimension of travel, and how travel decisions are influenced not
only by the global state of the transportation system, but also by joint decisions and interactions
with social contacts — a clear sign for this interest being the regular workshops organized on
this theme (Dugundji et al., 2008, 2011, 2012).

Previous studies have been conducted with the idea that an important factor in leisure trip
destination choice, or activity duration choice, is the ability to meet social contacts. Examples
of empirical work include Carrasco and Habib (2009), Habib and Carrasco (2011) or Moore
et al. (2013). All those studies show a significant influence of social contacts on the spatial and
temporal distribution of activities. In addition, the influence of the social nature of human beings
was shown to generate paradoxical effects. For instance, Harvey and Taylor (2000) show that
persons working from home tend to travel further for leisure purpose, in order to fulfill their
need for social contact, that they cannot fulfill at their workplace. A model ignoring such effects
might thus substantially underestimate the traveled distances for such individuals.

A very active field of research is the study and modeling of intrahousehold interactions and joint
decision making, often using the classical random utility framework extended to group decision
making. A classical way to cope with the possibly conflicting objectives of different members
of the household is to specify a group level utility function. For instance, Zhang et al. (2005,
2007) develop a model where time for different activity types is allocated to household members,
subject to time constraints (including equality of time participation in joint activities), using a
group level utility function formulated as a multilinear combination of the individuals’ utilities
— that is, a linear combination of individual utilities and pair-wise product of individual utilities.
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Kato and Matsumoto (2009) use a linear combination of the utility functions of the household
members as a group utility. The assumption behind this kind of models is the existence of
“utility transfers”: individuals accept to decrease their own utility if it allows to increase the
utility of others by a certain fraction of their loss. Bradley and Vovsha (2005) focus on
the “daily activity pattern” generation, with household “maintenance” tasks (e.g. shopping)
allocation and possibility of joint activities. To do so, they assume a layered choice structure,
choosing first a daily activity pattern for each member, and then assigning joint and maintenance
activities. Gliebe and Koppelman (2005) also base their model on the daily activity pattern
concept, choosing first a “joint outcome” (the sequence of individual and joint activities), and
then an individual pattern for each household member. Those models rely on enumeration of
the possible household level patterns. Gliebe and Koppelman (2002) also derived a constrained
time allocation model, which predicts the time passed by two individuals in joint activities.
Rather than postulating a group level utility function, the models of those authors specify a
special distribution for the error terms of the individuals. In this setting, the error term of the
individuals are correlated so that the probability of choosing a given joint output is the same for
all individuals. Ho and Mulley (2013) also estimate models in which members of the household
perform choices constrained by the choice of a household level travel pattern. Their data, as well
as the parameters of the models, show high joint household activity participation on weekends,
and a high dependence of joint travel on trip purpose and household mobility resources. Those
results highlight the importance of representing joint household decisions, in particular when
going beyond the “typical working day”. Vovsha and Gupta (2013) formulate a time allocation
model for multiple worker households, which considers a positive utility for members of the
household to be home jointly, as it makes joint activities possible. The estimation results show
a significant influence of this kind of synchronization mechanism. Most models listed in this
paragraph are specific to given household structures; in particular, separate models need to be
estimated for different household sizes.

Household level decision processes have also been modeled with approaches which signifi-
cantly differ from the classical random utility framework. Golob and McNally (1997) propose
a structural equation model, which predicts time allocation and trip chaining based on the
sociodemographics of a household. Golob (2000) also used a structural equation model to model
the dependency of time allocations of the two heads (man and woman) of a household.

Another class of approaches, more oriented toward multiagent simulation than analysis, is the use
of optimization algorithms to generate households plans. They handle the household scheduling
problem by transforming it into a deterministic utility maximization problem. Contrary to the
previously presented approaches, those alternatives do not lead to the estimation of a model
against data. The first of those approaches was introduced by Recker (1995). By extending
increasingly the formulation of the Pick-Up and Delivery Problem With Time Windows, a
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well studied combinatorial optimization problem, he formulates the problem of optimizing
the activity sequence of members of a household as a mathematical programming problem.
However, due to the complexity of the problem, the full problem cannot be solved exactly by
standard operations research algorithms, and the activity durations are not part of the optimized
dimensions. Chow and Recker (2012) designed an inverse optimization method to calibrate the
parameters of this model using measured data. Also, the formulation from Recker (1995) was
later extended by Gan and Recker (2008) to introduce the effects of within day rescheduling due
to unexpected events. Another attempt to generate plans for households uses a genetic algorithm,
building on a previous genetic algorithm for individual plan generation (Charypar and Nagel,
2005; Meister et al., 2005a). This algorithm optimizes sequence, duration and activity choice for
a household, rewarding the fact that several members of the household perform the same activity
simultaneously, in the way also used by Vovsha and Gupta (2013). Finally, Liao et al. (2013)
formulate the problem of creating schedules for two persons traveling together as finding the
shortest path in a “supernetwork”, and solve this problem using exact shortest path algorithms.
They however note that their model is specific to the two person problem, and that extension
to larger numbers of agents may prove to be computationally expensive. All those approaches
remained experimental, and were not integrated into multiagent simulation tools.

Another class of methods aiming at multiagent simulations consists of rule based systems, which
use heuristic rules to construct household plans. Miller et al. (2005) develop such a model for
household mode choice. The main difference with an individual mode choice model is the
consideration of household level vehicle allocation. In their model, individuals first choose
modes individually. If a conflict occurs, the allocation that maximizes the household level utility
is chosen. The members which were not allocated a vehicle will fall back on their second best
choice, and/or examine shared rides options. Arentze and Timmermans (2009) develop a
rule base model which relies on a simulated bargaining process within the household. Though
such models can easily represent complex decision processes, their calibration and validation is
cumbersome.

Another field of empirical research studies the spatial characteristics of social networks. For
instance, Carrasco et al. (2008) studied the relationship between individual’s socioeconomic
characteristics and the spatial distribution of their social contacts. This kind of empirical
work allows to specify and estimate models able to generate synthetic social networks, given
sociodemographic attributes and home location. Another kind of data collection is the one of
Kowald (2013), that uses the technique of snowball sampling, where random individuals are
asked to list social contacts, that are in turn contacted and asked the same set of questions. Based
on this data, Arentze et al. (2012) estimated a model capable of synthetizing social networks
with realistic geographical and topological properties. This kind of model is essential if one
wants to include social network interactions in microsimulation model.

3



Simulating the influence of Social Contacts Spatial Distribution on Mobility Behavior April 2015

This integration of social networks in multiagent simulation frameworks has already been
attempted by other authors. Due to their disaggregated description of the world, such models
are particularly well suited to the representation of complex social topologies. Han et al. (2011)
present experiments of using social networks to guide activity location choice set formation
in the FEATHERS multiagent simulation framework. Using a simple scenario with 6 agents
forming a clique, they consider the influence of various processes like information exchange and
adaptation to the behavior of social contacts to increase the probability of an encounter. They do
not, however, represent joint decisions, such as the scheduling of a joint activity. The same kind
of processes have been investigated by Hackney (2009), using more complex network topologies,
within the MATSim framework, used in this paper. Ronald et al. (2012) and Ma et al. (2011,
2012) present agent based systems which do integrate joint decision making mechanisms, based
on rule based simulations of a bargaining processes. Frei and Axhausen (2011a) demonstrate
a simple joint planning model, where (a) social contacts decide to perform a joint activity if it
improves the utility of all co-participants (b) location of a joint activity is chosen to maximise a
group utility. They are not yet integrated into any operational mobility simulation platform.

This data allowed the estimation of social network generation models, to create the input for
microsimulation softwares. Illenberger et al. (2009) propose a simple model for generating
synthetic social networks, based on the data collected for Zurich (Kowald and Axhausen,
2012; Kowald, 2013). Frei and Axhausen (2011b) compare two approaches for social network
generation, on toy examples (with points randomly located in a square). Arentze et al. (2013)
developed a more sophisticated social network generation model, that not only uses home
location as an explanatory variable, but also gender and age similarity, and includes explicitly
transitivity — the fact that, everything else equals, two individuals have a higher probability to
be friends if they have common friends.

Meister et al. (2005b) did a first attempt to simulate joint planning in an household, using the
concept of a joint household utility. Dubernet and Axhausen (2014) integrated this concept
into the MATSim framework, showed that this simple idea produces unrealistic behavior, and
proposed another solution concept for the joint planning problem, seen as a game theoretic game.
This solution framework was shown to behave pretty well for the household case (Dubernet
and Axhausen, forthcoming), and its application to more general social networks is being
explored.

Those remarks point the need to represent social contacts in microsimulation, to actually
represent the influence of social contacts, and of their geographical distribution, on travel
behavior. This paper presents a model to represent joint decisions, that is a prerequisite for
testing such effects. The variability of the results under different social network characteristics
is then explored, for a scenario in the Zurich area.
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2 Model and Simulation Framework

The current section presents a simulation framework for the simulation of joint decisions for
mobility behavior forecasting.

This section gives a brief overview of the theoretical underpinnings of the simulation framework.
More details can be found in Dubernet and Axhausen (2012, 2013b,a) or Dubernet and Axhausen
(2014)

Game theory, as a theoretical framework to represent competition, has been used in many forms
in transportation research. One of the earlier examples, and probably one of the most influential,
is the Wardrop equilibrium condition in traffic assignment (Wardrop, 1952), which is simply
a Nash equilibrium of a specific congestion game. This equilibrium notion has then widely
spread in transportation research in general, and traffic assignment in particular, and doing an
exhaustive review is not the purpose of this paper.

Although the outcome of any game is a decision "joint" in some way (the decision of a player
depends on the decisions of the other players), this work uses a more restrictive definition of
what is a joint decision.

A joint decision, as we understand it here, is a set of interlinked decisions by several players,
requiring the usage of explicit coordination, or binding agreements. Including such possibility
in a game theoretic framework requires a specific solution concept.

This can be illustrated by a classical game, called the House Allocation Problem (Schummer
and Vohra, 2007). This game consists of n players and n houses. Moreover, each player has its
individual ordering of the houses, from the most preferred to the least preferred, and players
prefer being allocated alone to any house rather than in the same house as somebody else. The
strategy of a player is the house chosen to live in.

An interesting feature of this game is that any one-to-one allocation of players to houses is a
Nash Equilibrium: no player can improve its payoff by unilaterally changing its strategy, as it
would require choosing an occupied house. This result however contradicts basic intuition about
the stability of such an allocation. In this particular case, a more realistic solution concept is the
Absence of Blocking Coalition: given a one-to-one allocation of houses to players, a blocking
coalition is a set of players which could all be better off by re-allocating their houses among
themselves.

It is to be noted that both solution concepts correspond to rational agents, i.e agents having a
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preference ordering over outcomes. What differentiates both solution concepts is the degree of
communication which is hypothesized: in a Nash Equilibrium, for a given player, the strategies
of the others are taken as given; in an Absence of Blocking Coalition, players have the possibility
to "negotiate" a change of strategy with other players, which will be accepted only if all agents
in the negotiation are better off after the re-allocation. In this work, we consider that a Nash
Equilibrium corresponds to individual decisions only, whereas the blocking coalition concept
allows what we name joint decisions.

Given those remarks, a solution concept for the "daily planning game", including the possibility
of binding agreements, is adopted: the Absence of Improving Coalition concept. Given an
allocation of daily plans to individuals, an improving coalition is a set of social contacts that
could all be better off by simultaneously changing their daily plan. One can think of a group of
friends switching from individual dinners at home to a joint dinner in a restaurant.

A co-evolutionary algorithm is designed to solve this problem, using the MATSim framework.
The basic modeling idea is that individuals associate a utility value to their day, which increases
with the time spent performing activities and decreases with the time spent traveling. Different
parameters can be used for different modes or activity types, using the functional form from
Charypar and Nagel (2005). Travel time is influenced by other agents via congestion. Co-
evolutionary algorithms are particularly well suited for this kind of problems (Ficici, 2004;
Popovici et al., 2012).

Figure 1: The MATSim iterative process

Initial
Demand

Mobility
Simulation

Scoring Output

Evaluation

Replanning

The co-evolutionary algorithm used to solve this problem is an emulation of a learning process
(Nagel and Marchal, 2006). Using the iterative learning analogy, the specification of the
algorithm is quite natural: each agent will perform an evolutionary algorithm to optimize its own
daily plan, the fitness of which will be evaluated by executing all daily plans on the network to
evaluate the resulting state of the transportation system. The steps of this process are represented
on Fig. 1.

The first step is the specification of an Initial demand. All agents have an initial daily plan, which
will serve as a starting point for the iterative improvement process. Some characteristics of the
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plans are left untouched during the simulation, and should therefore come from data or external
model. This is typically the case of long term decisions, such as home and work locations, or
decisions involving a larger time frame than a single day (e.g. do the weekly shopping or not).

The second step is the Mobility simulation. Plans of all agents are executed concurrently, to
allow estimating the influence of the plans of the agents on each other. This step typically uses
a queue simulation to simulate car traffic, which gives estimates of the congested travel time.
Simulation of bus delays due to congestion and bus bunching can also be included. Together
with the next step, this step constitutes the evaluation stage of the co-evolutionary algorithm.

Then comes Scoring. The information from the simulation is used to estimate the score of
each individual plan. This information typically takes the form of travel times and time spent
performing activities; experiments also included information such as facility crowding (Horni
et al., 2009). The functional form is the one used by Charypar and Nagel (2005). It uses a linear
disutility of travel time, and a logarithmic utility of time passed performing activities. Different
parameters can be defined for each mode/activity type.

This gives the score from a single interaction. The fitness of the daily plan (entity of the
algorithm) can then be updated, as (1−α) fold +α fnew , with α ∈ [0.5, 1] being the learning rate.
The lowest the learning rate, the more the fitness of a plan will be close to an average fitness
over the evaluated interactions. While this is consistent with the hypothesis that individuals react
to the expected state of the transport system, most applications use a learning rate of 1, which
results in more reactive agents, and thus faster convergence.

The last step is Replanning. This step actually groups two of the important components of
co-evolutionary algorithms: (a) selection of the interactions for evaluation, and (b) application
of the evolutionary operators (selection and mutation). To do so, part of the agents select a past
plan based on the experienced score, following a Logit selection probability. This will have two
consequences: (a) the state of the transport system, used for evaluation, will only evolve slowly
from iteration to iteration, giving the time to the agents to adapt, and (b) those plans will be
re-evaluated, given the new plans of the other agents. The other agents copy and mutate one of
their past plans. What kind of mutation is performed determines which alternative plans will be
tried out by the agent.

Those steps are iterated until a stationary state is reached, and the state of the system in this
stationary state is taken as a result.

Given this general framework, to be able to implement an algorithm searching for states without
blocking coalitions, one needs a way to represent the influence of explicit coordination on the
utility of a daily plan. This is solved by including joint plans constraints. A joint plan is a set
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of individual plans executed simultaneously. Different copies of the same individual plan can
be part of different joint plans — for instance an agent might go to a given restaurant alone,
with members of its household or with a group of friends. The score of the different copies
will take into account the influence of the joint plan to which it pertains. Those joint plan
constraints are included using heuristic rules, applied after mutation operators are applied, and
are classified as strong or weak constraints — weak constraints are considered when selecting
plans for execution, but are allowed to be broken when merely selecting plans for mutation.
They are then part of the evolution process. In the current application, the heuristic rules consist
in joining newly created plans with joint trips (strong) or with leisure activities at the same
location at the same time (weak).

To allow handling joint plans, replanning needs to be performed for groups of agents: agents are
handled with all agents with whom they have a joint plan, plus some social contacts with whom
new joint plans can be created, chosen randomly among the social contacts.

For each group, two actions are then possible. For most groups, an allocation of existing plans,
fulfilling the joint plans constraints, is selected for execution. Based on plan scores, randomized
by adding an extreme value distributed error term, an allocation without improving coalitions is
searched for by an algorithm inspired by the "Top Trading Cycle" algorithm used for the House
Allocation Problem (Schummer and Vohra, 2007).

For the other groups, a plan allocation is selected and copied. The copied plans then undertake
mutation, to make the agents explore new alternative joint plans. What kind of mutation is
performed determines which alternative plans will be tried out by the agent. The modules used
in this study are:

• Departure time mutation
• Subtour mode mutation and re-routing
• Joint trip insertion/removal and re-routing
• Swap two random activities and re-routing
• Choose new leisure location for a group of social contacts

Agents have a limited memory size, keeping at most 3 plans per joint plan composition, and
10 plans in total. If this limit is exceeded, one should keep the plans which have the highest
probability to create improving coalitions, that is, to be preferred to the other plans in the agent’s
memory. To this end, a lexicographic ordering is used: the process removes the joint plan
which maximizes the number of individual plans which are the worst of the agents’ memories.
If several joint plans have the same number of worst plans, the process chooses among them
the joint plan which maximizes the number of second worst plans, and so on until the "worst"
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joint plan is unique. When the overall maximum number of plans in the memory of an agent is
reached, the worst individual plan for this agent is removed along with plans of other agents
of the same joint plan. Each agent keeps at least one plan not part of a joint plan, as there may
otherwise not be any state without blocking coalitions. Agents are parsed in random order, to
avoid the emergence of "dictators" over iterations, whose worst plan would always be removed,
even if it is the only "bad" plan of a joint plan.

Though those selection operators seem to be in accordance with the chosen solution concept, it
is difficult, if not impossible, to prove that the process will actually converge towards the state
searched. As noted by Ficici et al. (2005), when they perform a theoretical analysis of different
selection methods in a co-evolutionary context, "Co-evolutionary dynamics are notoriously

complex. To focus our attention on selection dynamics, we will use a simple evolutionary
game-theoretic framework to eliminate confounding factors such as those related to genetic
variation, noisy evaluation, and finite population size". Those "confounding factors" can however
not be eliminated from an actual implementation of a co-evolutionary algorithm, and rigorously
proving that a given algorithm actually implements a specific solution concept is very tedious, if
not impossible.

With iterations, agents build a choice set of daily plans that becomes better and better given
the actions of the other agents. However, the presence of a large portion of agents with plans
resulting from random mutation creates noise, not only for the analyst looking at the output of
the simulation, but for the agents themselves when they compute the score of their plans. To
solve this issue, when the system reaches a stable state, agents stop performing mutation, and
only select plans from their memory for 100 iterations, using the absence of improving coalition
with randomized scores. This ensures that the selected plans are the result of a behavioral model,
rather than the result of random mutation operators.

3 Results

This section presents results for runs with two distinct social networks, for simulations in the
Zurich Area.

Table 1 presents statistics of the synthetic social networks, compared with the statistics from
the snowball sample from Kowald (2013). The social networks were generated using the model
from Arentze et al. (2013), estimated on this same dataset. This model works by testing the
probability, for each agent in turn, to establish friendship with each member of a sample of the
full population. The two social networks were generated using two different sampling rates:
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0.025% for the long ties, and 10% for the short. Thus, homophily (the proportion of ties linking
agents falling within the same age category or gender) is also lower for the social network with
long ties. The social network is then restricted to the persons part of the Zurich-centered initial
demand. This results in a decrease of the ego-alter distances, with only a very minimal decrease
in degree.

Table 1: Characteristics of the Synthetic Social Networks

Homophily (%)

Social Network Clustering Avg. Degree Age Gender Distance (km)

Snowball 0.206 22 46.3 61.7 26.6

Long 0.190 22 30.7 56.5 49.1
Long (ZH) 0.187 20.6 29.4 55.7 17.8

Short 0.150 21.7 45.2 66.0 18.8
Short (ZH) 0.225 20.6 45.4 66.2 7.3

Fig. 2 presents the traveled distribution per mode. The realism of the social network improves
a lot the realism of the traveled distances for joint travel, in particular for the “driver” mode:
drivers perform much less detours when social contacts are properly located. In addition, it
makes the traveled distances for bike and walk shorter, improving their fit of the observed data,
by adding more joint trip opportunities for trips too short for public transport, but too long for
walk or bike.

Fig. 3 shows the distance distribution per Origin/Destination activity type pair. The geography
of the social network has here only a minimal influence on the travelled distribution. This
improvement in the prediction of the traveled distance was one of the motivations of this work.
The absence of strong effect does not however means that the approach is not suitable: as for the
low share of joint trips, this might come from the abscence of correlation when sampling plans
for social contacts, leading to too few joint leisure opportunities.

4 Conclusion

The geography of social contacts is assumed to be an important factor influencing daily mobility,
as previous studies showed that leisure activities are mainly performed for social purposes.
However, current forecasting tools fail to represent this kind of phenomenon.
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Figure 2: Travel Distance Distribution per Mode
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Representing the influence of the spatial distribution of social contacts on the characteristics of
travel requires representing how individuals agree on a joint outcome.

This paper presented an algorithm to simulate this kind of decisions, based on an equilibrium
formulation allowing coordination, that is solved through a co-evolutionnary algorithm.

Testing the algorithm with two social networks, with realistic and too long ego-alter home-home
distances. There is an important effect of the realism of the social network on the realism of
traveled distances as a car passenger. However, the willingness to perform joint activities does
not seem to improve the travelled distances to leisure the way it was expected.

It is hypothesized that the remaining problems come from an inaccurate population synthesis,
that includes also the allocation of activity chains to agents. Solving this problem is the most
important of the next steps. A new survey, as well as the use of phone call data, is envisionned
to develop a method to co-generate activity chains for social contacts.

5 References

Arentze, T. A., M. Kowald and K. W. Axhausen (2012) A method to model population-wide
social networks for large scale activity-travel micro-simulation, paper presented at the 91st

Annual Meeting of the Transportation Research Board, Washington, D.C., January 2012.

Arentze, T. A., M. Kowald and K. W. Axhausen (2013) An agent-based random-utility-
maximization model to generate social networks with transitivity in geographic space, Social

Networks, 35 (3) 451–459.

Arentze, T. A. and H. J. P. Timmermans (2009) A need-based model of multi-day, multi-person
activity generation, Transportation Research Part B: Methodological, 43 (2) 251–265.

Axhausen, K. W. (2005) Social networks and travel: Some hypotheses, in K. P. Donaghy, S. Pop-
pelreuter and G. Rudinger (eds.) Social Dimensions of Sustainable Transport: Transatlantic

Perspectives, Ashgate, Aldershot.

Bradley, M. A. and P. Vovsha (2005) A model for joint choice of daily activity pattern types of
household members, Transportation, 32 (5) 545–571.

Carrasco, J. A. and K. M. N. Habib (2009) Understanding the social embeddedness of activity-
travel participation: The case of frequency and duration of social activities, paper presented at
the 12th International Conference on Travel Behaviour Research (IATBR), Jaipur, December
2009.

12



Simulating the influence of Social Contacts Spatial Distribution on Mobility Behavior April 2015

Carrasco, J. A., E. J. Miller and B. Wellman (2008) How far and with whom do people socialize?
empirical evidence about the distance between social network members, Transportation

Research Record, 2076, 114–122.

Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic
algorithms, Transportation, 32 (4) 369–397.

Chow, J. Y. and W. W. Recker (2012) Inverse optimization with endogenous arrival time
constraints to calibrate the household activity pattern problem, Transportation Research Part

B: Methodological, 46 (3) 463 – 479.

Dubernet, T. and K. W. Axhausen (2012) Including joint trips in a multi-agent transport simu-
lation, paper presented at the 13th International Conference on Travel Behaviour Research

(IATBR), Toronto, July 2012.

Dubernet, T. and K. W. Axhausen (2013a) A Framework to Represent Joint Decisions in a
Multi-Agent Transport Simulation, paper presented at the 13th Swiss Transport Research

Conference, Ascona, April 2013.

Dubernet, T. and K. W. Axhausen (2013b) Including joint decision mechanisms in a multiagent
transport simulation, Transportation Letters, 5 (4) 175–183.

Dubernet, T. and K. W. Axhausen (2014) Solution Concepts for the Simulation of Household-
Level Joint Decision Making in Multi-Agent Travel Simulation Tools, paper presented at the
14th Swiss Transport Research Conference, Ascona, May 2014.

Dubernet, T. and K. W. Axhausen (forthcoming) Implementing a household joint activity-travel
multi-agent simulation tool: First results, Transportation.

Dugundji, E. R., A. Páez and T. A. Arentze (2008) Social networks, choices, mobility, and travel,
Environment and Planning B, 35 (6) 956–960.

Dugundji, E. R., A. Páez and T. A. Arentze (2012) Urban mobility and social-spatial contact —
introduction, Environment and Planning A, 44 (5) 1011–1015.

Dugundji, E. R., A. Páez, T. A. Arentze, J. L. Walker, J. A. Carrasco, F. Marchal and H. Nakanishi
(2011) Transportation and social interactions, Transportation, 45 (4) 239–247.

Ficici, S. G. (2004) Solution concepts in coevolutionary algorithms, Ph.D. Thesis, Brandeis
University, Waltham.

Ficici, S. G., O. Melnik and J. B. Pollack (2005) A game-theoretic and dynamical-systems
analysis of selection method in coevolution, IEEE Transactions on Evolutionary Computation,
9 (6) 580–602.

13



Simulating the influence of Social Contacts Spatial Distribution on Mobility Behavior April 2015

Frei, A. and K. W. Axhausen (2011a) Collective location choice model, Working Paper, 686,
IVT, ETH Zurich, Zurich.

Frei, A. and K. W. Axhausen (2011b) Modeling spatial embedded social network, Working

Paper, 685, IVT, ETH Zurich, Zurich.

Gan, L. P. and W. W. Recker (2008) A mathematical programming formulation of the household
activity rescheduling problem, Transportation Research Part B: Methodological, 42 (6)
571–606.

Gliebe, J. P. and F. S. Koppelman (2002) A model of joint activity participation, Transportation,
29 (1) 49–72.

Gliebe, J. P. and F. S. Koppelman (2005) Modeling household activity-travel interactions as
parallel constrained choices, Transportation, 32 (5) 449–471.

Golob, T. F. (2000) A simultaneous model of household activity participation and trip chain
generation, Transportation Research Part B: Methodological, 34 (5) 355–376.

Golob, T. F. and M. G. McNally (1997) A model of activity participation and travel interactions
between household heads, Transportation Research Part B: Methodological, 31 (3) 177–194.

Habib, K. M. N. and J. A. Carrasco (2011) Investigating the role of social networks in start
time and duration of activities: Trivariate simultaneous econometric model, Transportation

Research Record, 2230, 1–8.

Hackney, J. K. (2009) Integration of social networks in a large-scale travel behavior microsimu-
lation, Ph.D. Thesis, ETH Zurich, Zurich.

Han, Q., T. A. Arentze, H. J. P. Timmermans, D. Janssens and G. Wets (2011) The effects of
social networks on choice set dynamics: Results of numerical simulations using an agent-
based approach, Transportation Research Part A, 45 (4) 310–322.

Harvey, A. S. and M. E. Taylor (2000) Activity settings and travel behaviour: A social contact
perspective, Transportation, 27 (1) 53–73.

Ho, C. and C. Mulley (2013) Tour-based mode choice of joint household travel patterns on
weekend and weekday, Transportation, 40 (4) 789–811.

Horni, A., D. M. Scott, M. Balmer and K. W. Axhausen (2009) Location choice modeling
for shopping and leisure activities with MATSim: Combining micro-simulation and time
geography, paper presented at the 88th Annual Meeting of the Transportation Research Board,
Washington, D.C., January 2009.

14



Simulating the influence of Social Contacts Spatial Distribution on Mobility Behavior April 2015

Illenberger, J., G. Flötteröd, M. Kowald and K. W. Axhausen (2009) A model for spatially
embedded social networks, Working Paper, 593, IVT, ETH Zurich, Zurich.

Kato, H. and M. Matsumoto (2009) Intra-household interaction in a nuclear family: A utility-
maximizing approach, Transportation Research Part B: Methodological, 43 (2) 191–203.

Kowald, M. (2013) Focusing on leisure travel: the link between spatial mobility, leisure acquain-
tances and social interactions, Ph.D. Thesis, IVT, ETH Zurich.

Kowald, M. and K. W. Axhausen (2012) Focusing on connected personal leisure networks:
Selected results from a snowball sample, Environment and Planning A, 44 (5) 1085–1100.

Liao, L., T. A. Arentze and H. J. P. Timmermans (2013) Multi-state supernetwork framework
for the two-person joint travel problem, Transportation, 40 (4) 813–826.

Ma, H., T. A. Arentze and H. J. P. Timmermans (2012) Incorporating selfishness and altruism int
dynamic joint activity-travel scheduling, paper presented at the 13th International Conference

on Travel Behaviour Research (IATBR), Toronto, July 2012.

Ma, H., N. Ronald, T. A. Arentze and H. J. P. Timmermans (2011) New credit mechanism for
semicooperative agent-mediated joint activity-travel scheduling, Transportation Research

Record, 2230, 104–110.

Meister, K., M. Frick and K. W. Axhausen (2005a) A GA-based household scheduler, Trans-

portation, 32 (5) 473–494.

Meister, K., M. Frick and K. W. Axhausen (2005b) Generating daily activity schedules for
households using genetic algorithms, paper presented at the 5th Swiss Transport Research

Conference, Ascona, March 2005.

Miller, E. J., M. J. Roorda and J. A. Carrasco (2005) A tour-based model of travel mode choice,
Transportation, 32 (4) 399–422.

Moore, J., J. A. Carrasco and A. Tudela (2013) Exploring the links between personal networks,
time use, and the spatial distribution of social contacts, Transportation, 40 (4) 773–788.

Nagel, K. and F. Marchal (2006) Computational methods for multi-agent simulations of travel
behavior, in K. W. Axhausen (ed.) Moving Through Nets: The Physical and Social Dimensions

of Travel, 131–188, Elsevier, Oxford.

Popovici, E., R. P. Wiegand and E. D. De Jong (2012) Coevolutionary principles, in G. Rozen-
berg, T. Bäck and J. N. Kok (eds.) Handbook of Natural Computing, 987–1033, Springer,
Heidelberg.

15



Simulating the influence of Social Contacts Spatial Distribution on Mobility Behavior April 2015

Recker, W. W. (1995) The household activity pattern problem: General formulation and solution,
Transportation Research Part B: Methodological, 29 (1) 61–77.

Ronald, N., T. A. Arentze and H. J. P. Timmermans (2012) Modelling social interactions between
individuals for joint activity scheduling, Transportation Research Part B: Methodological,
46 (2) 276–290.

Salomon, I. (1985) Telecommunications and travel: Substitution or modified mobility?, Journal

of Transport Economics and Policy, 19 (3) 219–235.

Schlich, R., S. Schönfelder, S. Hanson and K. W. Axhausen (2004) Structures of leisure travel:
Temporal and spatial variability, Transport Reviews, 24 (2) 219–237.

Schummer, J. and R. V. Vohra (2007) Mechanism design without money, in N. Nisan, T. Rough-
garden, É. Tardos and V. V. Vazirani (eds.) Algorithmic Game Theory, 243–266, Cambridge
University Press, Cambridge.

Stauffacher, M., R. Schlich, K. W. Axhausen and R. W. Scholz (2005) The diversity of travel
behavior: Motives and social interactions in leisure time activities, Working Paper, 328, IVT,
ETH Zurich, Zurich.

Vovsha, P. and S. Gupta (2013) A model for work activity schedules with synchronization for
multiple-worker households, Transportation, 40 (4) 827–845.

Wardrop, J. G. (1952) Some theoretical aspects of road traffic research, Proceedings of the

Institution of Civil Engineers, 1 (3) 325–362.

Zhang, J., H. J. P. Timmermans and A. W. J. Borgers (2005) A model of household task allocation
and time use, Transportation Research Part B: Methodological, 39 (1) 81–95.

Zhang, J., H. J. P. Timmermans and A. W. J. Borgers (2007) Utility-maximizing model of
household time use for independent, shared, and allocated activities incorporating group
decision mechanisms, Transportation Research Record, 1807, 1–8.

16


	Introduction
	Model and Simulation Framework
	Results
	Conclusion
	References

