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Abstract

We propose a model for the choice of an activity pattern. Models of activity participation patterns
allow to assess the impact of demand management strategies on activity and destination choices.

In particular, we focus on choice set generation of activity patterns using recent developments in
route choice modeling. Spatial choices deal with large choice sets. We develop a framework for
choice set generation based on path choice. The activity-episode sequence is modeled as a path in
an activity network defining the activity type, duration and time of day. The large dimensionality
of the choice set is managed through an importance sampling based on Metropolis-Hastings
algorithm.

Our model can be used to forecast demand at the urban scale and also in pedestrian facilities,
such as transport hubs or mass gathering. Validation of the approach is performed on synthetic
data and a case study using WiFi traces on a campus is presented.

Keywords
Activity-based modeling; pedestrians; choice set generation; multimodal transport hub; train
station; airport
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Notations

aψi an activity episode, aψi = (x, t−, t+), for individual i

a1:Ψi = (a1, ..., aΨi) an observed activity-episode sequence
att(x, t) the attractivity for location x ∈ POI at time t

Aψ an activity, Aψ = (Ak, t−, t+)
A1:Ψi = (A1, ..., Aψ, ..., AΨi) an activity pattern with Ψi activities, indexed by ψ
A(aψi) a function aψi 7→ A(aψi) = Ak ∈ {A1,A2, ...,AK}

Ak an activity type, k ∈ K

Ak,τ a node in the activity network, corresponding to activity typeAk

and unit of time τ
A1:T an activity path, i.e., a representation of an activity pattern A1:Ψi

in an activity network
α the parameter associated to travel time in the schedule delay

approach
b(Γ) the unnormalized target weights for path Γ

bk the preferred time for activity typeAk in the Cauchy distribution
for time-of-day preference in the activity utility

DDR the domain of data relevance
β the parameters of the choice model
ck the width of the Cauchy distribution for time-of-day preference

in the activity utility for activity typeAk

Ci the choice set for an individual i

d distance between the iterations in the Metropolis-Hastings
algorithm

δ a cost function
δv(v) the cost of node v

δΓ(Γ) the non-link-additive cost of path Γ

δ(Γ) the generalized cost of path Γ

e the end node of an activity network
E the set of edges in S ERG

ηk the parameters for satiation for activity typeAk

f the labeling function, f : N → L̃, in S ERG

g a function associating nodes with coordinates in a coordinate
system, g : N → R × R × R

γe, γl the parameters for early and late schedule delay
Γ a path in the activity network





     

i an individual
I the set of all individuals in the period of interest
j the index of a measurement m̂ j

J the total number of measurements
k the index of an activity type.
kΓn the number of times activity path Γ is drawn
K the number of activity types.
L the number of different activity-episode sequences a1:Ki corre-

sponding to observation i

Li the set of all activity patterns corresponding to observation i

L̃ a set of relevant labels for rooms in S ERG

m̂ a raw measurement, containing location x̂ and timestamp t̂

m̂1:J a set of measurements m̂ j

µ scale parameter for the Metropolis-Hastings algorithm, µ > 0,
µ = ln 2

(ζ−1)δS P

n a node in SERG, n ∈ N

N the set of all nodes in S ERG

POI the set of points of interest, POI ∈ N

Pi the set of all candidate activity paths for observation i

PI the set of all candidate activity paths for all individuals i ∈ I in
the period of interest.

PA1:Ψi
the set of candidate paths corresponding to the activity pattern
A1:Ψi

ψi the index of a activity episode aψi .
Ψi the total number of episodes aψi in the activity-episode sequence

a1:Ψi and the total number of activities A in the activity pattern
A1:Ψi . Ψi is individual specific.

q( j) the sampling probability
s the start node of an activity network
S x,i(t) the instantaneous potential attractivity measure in location x ∈

POI at time t for individual i

S x,i(t−, t+) the potential attractivity measure in location x ∈ POI between
start time t− and end time t+ for individual i

SAk ,τ the potential attractivity measure for activity type Ak at time
interval τ for individual i, corresponding to nodeAk,t

schedx,i(t) a dummy variable for time constraints in location x ∈ POI at
time t for individual i





     

S DE, S DL early and late schedule delay, defined as S DE = max(t∗ − ta, 0)
and S DL = max(ta − t∗, 0)

S ERG a semantically-enriched routing graph, S ERG :=
(N ,E,L, f , g, POI)

t time, continuous
τ a discrete unit of time in the activity network, τ ∈ 1, 2, ...,T . τ

can also be seen as a time interval between τLB and τUB

τLB the lower bound of the time interval τ
τUB the upper bound of the time interval τ
T the total number of units of time τ
Tmin a minimum time threshold for activity episodes (typically 5 min-

utes in a pedestrian context)
t̂ a timestamp of a raw measurement m̂

ta the actual arrival time in the schedule delay approach
t− the start time of an activity episode a, a continuous random

variable
t+ the end time of an activity episode a, a continuous random

variable
t∗ the preferred arrival time in the schedule delay approach
tt the travel time to destination in the schedule delay approach
ttxψ,xψ+1 the travel time from xψ to xψ+1.
U the choice set corresponding to the activity network
v a node in the activity path Γ, v ∈ Γ

Vmax,k the scale of the Cauchy distribution used for the time-of-day
preference part of the activity utility

w(Γ) the target weight of Γ

x the episode location, x ∈ POI

x̂ the position of a raw measurement m̂. x̂ ∈ R × R × R (x-y
coordinates in a coordinate system, and floor or altitude in a
multi-floor environment).

ζ scale-invariant parameter for the Metropolis-Hastings algorithm,
ζ > 1, µ = ln 2

(ζ−1)δS P





     

1 Introduction

In this paper, we propose a model for the choice of an activity pattern. We focus on choice
set generation of activity patterns using recent developments in route choice modeling. Our
model can be used to forecast demand at the urban scale and also in pedestrian facilities, such as
transport hubs or mass gathering.

Activity-based approach is motivated by the fact that the choice of an activity pattern triggers
the choice of destinations (Bierlaire and Robin, 2009). It is relevant for transportation policy
simulation such as congestion pricing, toll lanes, and changing schedules for work or shops
(Davidson et al., 2007). It is also relevant in models of pedestrian movement (Papadimitriou
et al., 2009).

Several models accounting for interactions that shape participation in different activities have
been proposed. Activity scheduling model over an entire-day framework is a mixture of rule-
based algorithm, duration models and discrete choice frameworks. The main drawback of most
of these models is the postulated rules: they are structured on home and tours from home,
with models applied sequentially according to priorities of activity types. Very often, the large
dimensionality of the problem (activity types, continuous time, number of episodes in the
day) implies aggregation or hierarchy of dimensions (broad periods of time, mandatory vs non
mandatory, primary vs secondary).

Our modeling approach is not tour-based and does not assume any priorities between activities.
It can be applied to weekdays, weekends, or even activities in a pedestrian facility, such as an
airport or a supermarket. Our only assumption is that people first choose the activity type, trip
timing and activity duration in their activity patterns (strategic level). Only then, conditionally
on the activity type and time of day, they choose their specific destination (tactical level).
Behaviorally, activity choice usually precedes destination choice (e.g., Bowman and Ben-Akiva,

2001, Arentze and Timmermans, 2004, Abou-Zeid and Ben-Akiva, 2012, Kang and Recker,
2013). Dimensionally, considering activity and destination as sequential choices makes the
problem tractable. In this paper, we focus on activity type, duration and time-of-day choices.
Examples of destination choice conditional on the activity type are Arentze et al. (2013) and
Horni (2013), and examples in pedestrian facilities can be found in Ton (2014), Kalakou and
Moura (2014) and Tinguely et al. (2015).

The chosen alternative is one sequence of activity episodes; utility is associated to the full pattern.
Represented as a path in a network, the sequence is a single choice, contrary to Pinjari and Bhat
(2010) who consider the activity-episode sequence as multiple choices of activity types and





     

duration.

In this context, challenges of activity choice modeling include the definition of the alternative in
the choice set, the choice set generation process and the utility structure for the given definition
of alternatives. Former approaches of these challenges are presented in Section 2, while our
methodology is developed in Section 3. The methodology is further applied to synthetic data
(Section 4) and exemplified with WiFi traces on a campus (Section 5).

2 Literature review

This review presents some relevant aspects of activity choice for our approach. Concepts from
route choice literature are also used in this paper. A review of choice set generation in route
choice literature can be found in Danalet and Bierlaire (2014). General reviews about activity-
based travel demand modeling can be found in Ettema (1996), Bhat and Koppelman (1999),
Roorda (2005), Habib (2007), Bowman (2009), Feil (2010), Pinjari and Bhat (2011), Miller
(2014) and Rasouli and Timmermans (2014).

All models of activity choice are built on the assumption that demand for traveling stems from a
demand for activity participation, and understanding activity patterns is important for demand
modeling. The goal of these models is to improve the traditional 4-step model by considering
activities instead of trips (see for instance Bowman, 2009, Pinjari and Bhat, 2011). They model
the interactions between time and space, trying to limit the independence assumption of the
different elements of the choice.

This field of research faces challenges such as modeling social interactions (coupling constraints
for household activities (e.g., Ho and Mulley, 2013, Gupta and Vovsha, 2013) or group activities
from the social network), dynamic modeling demand across several days (e.g., Nijland et al.,

2014), or modeling matching of demand and supply (i.e., congestion, as in Bradley et al. (2010),
Ouyang et al. (2011), Habib et al. (2013)). We previously reviewed the use of big data for
activity modeling (in particular unstructured data) and the application of activity-based models
for pedestrians in Danalet and Bierlaire (2014).

The challenge we address in this paper is how the time representation impacts the modeling of
choice set generation in activity-based modeling. Different representations of time and activity
types drive different strategies to manage the very large number of alternatives. In this review of
activity-based travel demand modeling, we focus on the time representation (Section 2.1), the
choice set generation (Section 2.2), the formulation of the utility function (Section 2.3) and the





     

correlation between activity patterns (Section 2.4).

2.1 Time representation in activity modeling

Time is the most important dimension in modeling activity-travel behavior (Yamamoto and Kita-
mura, 1999). Its adequate representation is a prerequisite for accurate forecasting (Hägerstraand,

1970, Pinjari and Bhat, 2011). Compared to trip-based models, scheduling models see time not
as a cost, but as a resource being used (Bhat, 2005). Time can be represented as continuous,
decomposed in tours from home, or as the chronological activity episodes (e.g., Li and Lee,

2014).

An example of continuous time is the dynamic discrete-continuous choice model by Habib
(2011). In this model, the decision maker sequentially chooses an activity type, and then its
duration, constrained by a given time budget and the expected utility for the remaining time. This
model is myopic, in the sense that it assumes that decision makers choose activities sequentially,
without planning later activities. The concept of composite activity covering the rest of the day
does not allow to model the choice of an overall pattern of activities with planning behavior.
The multiple discrete-continuous extreme value models (Bhat, 2005, Pinjari and Bhat, 2011,

Wang and Li, 2011) represent time as continuous and as a constraint (time budget). The decision
maker chooses several activity types and allocates to each of them a corresponding time-use, so
that it sums to the total time budget. The order in which it is consumed is not modeled.

In the activity-schedule approach (Ben-Akiva et al., 1996, Bowman, 1998, Bowman and Ben-
Akiva, 2001, Bradley et al., 2010, Shiftan and Ben-Akiva, 2011, Gupta and Vovsha, 2013), the
fundamental unit of time is a tour. A tour is a way to decompose the available time in a day
in manageable units with duration. The behavior is modeled as two sequential decisions, the
activity pattern and the tours. Only the tour models include information about timing, through (1)
the tour time of day choice model, modeling the tour primary destination arrival and departure
times, and (2) the trip departure time choice model, modeling some intermediate stop arrival
and departure times for trips on the tour (Childress, 2010, Abou-Zeid and Ben-Akiva, 2012).
Tours, primary destination of the tours and subtrips on the tours are sequentially modeling the
timing of activities in order to simplify the model and reduce the size of the choice set.

The time representation in activity modeling is generally continuous or tour-based. In continuous
time, the time representation is close to reality but misses an overall pattern choice (choice of
time expenditure per activity type without order in activity episodes (e.g., Pinjari and Bhat, 2011)
or per activity episode without pattern utility (Habib, 2011) but not of choice of a sequence of
activity episodes). With tours, the choice of pattern is explicit but independent of the timing





     

decision (start time and duration). It assumes a primary activity of the tour and a main mode
(e.g., Shiftan and Ben-Akiva, 2011).

2.2 Choice set generation in activity choice

Choice set specification has received attention in different fields such as route choice or res-
idential location choice (Ben-Akiva and Boccara, 1995, Swait, 2001, Başar and Bhat, 2004,

de Lapparent, 2009, Rasouli et al., 2013). A general review about choice set generation in spatial
context can be found in Pagliara and Timmermans (2009a,b).

Activity scheduling consists of two steps: generating the choice set and making a choice among
this set (Liao et al., 2013). The definition of the choice set for each decision is a major weakness
of the approach (Kang and Recker, 2013). The choice set generation in the context of activity
modeling is complex and fundamental to have unbiased estimates for the parameters of the
model, but data about the actual choice-set are usually missing. Moreover, the choice set
containing all combinations of activity episodes is large (Bowman, 1998, p.74).

Most research in the field is applied to simpler problems. The size of the choice set is reduced
through limitations in what enters the choice set and different assumptions related to the
representation of time.

For each activity type k ∈ {1, ...,K} (e.g., shopping), the activity-schedule approach considers
two choices: (1) Is there a home-based tour with this activity type as the primary destination?
(2) Are there secondary stops on this tour? Thus, at a maximum, the choice set for the activity
pattern consists of 22K alternatives (Abou-Zeid and Ben-Akiva, 2012). It is further reduced using
logical rules, such as the impossibility to have secondary stops if no corresponding primary tour
is chosen. Different applications of the activity-schedule approach use different sizes of the
choice set in the activity pattern model (Shiftan and Ben-Akiva, 2011). Nevertheless, they all
use the home-based tour structure to reach a manageable size for the activity pattern choice set
(48 elements in the San Francisco model, 114 in the Portland model (Shiftan and Ben-Akiva,

2011)). The timing of the tours and stops is estimated in submodels.

In the case of activity sequences (Li and Lee, 2014), the choice set contains KM sequences,
assuming a maximum number of possible activities in the day M. Timing is not considered
and thus it decreases the size of the choice set. Some models consider a single activity pattern,
typically home-work-home, with composite activity episodes for before and after work (Ettema
et al., 2007, Jenelius et al., 2011). In these cases, the choice is only about timing. In the multiple
discrete-continuous extreme value models, the choice set only contains K alternatives, one for





     

each activity type, with decreasing utility with time.

As a general strategy, activity type and scheduling are often not considered simultaneously.
By considering tours or sequential order, without timing, the size of the choice set decreases.
When considering simultaneously activity type and scheduling, assuming that the period of
interest contains T time units, the number of alternatives would be KT and the choice set size
explodes. Two answers are proposed in the literature: (1) Considering time as a continuous
variable and using a multiple discrete-continuous approach (Bhat, 2005) or a dynamic discrete-
continuous approach (Habib, 2011), or (2) Using the universal choice set containing all possible
combinations of time units and activity types and performing importance sampling, as mentioned
in Flötteröd and Bierlaire (2013). In this case, Lemp and Kockelman (2012) propose a first
estimation using simple random sampling (SRS) and a second estimation drawing alternatives
in proportion to the choice-probability estimates (not specifically for activity choice).

2.3 Formulation of utility function for activity sequences

Modeling the activity pattern formation requires a proper definition of the utility of an activity
pattern. Bhat (2005) considers the overall utility on an individual as the sum of the utilities of
each activity episode. This utility must reflect the time-of-day preferences, the fatigue effects
and the scheduling constraints (Ettema et al., 2007). The activity-schedule approach also defines
the primary activity as the most important activity of the day (Bowman and Ben-Akiva, 2001).

Regarding one activity episode, Winston (1982) decomposes the utility of an episode as the
satisfaction from performing the activity (process utility) and the satisfaction of completing
the activity (goal-achievement utility). Nurul Habib and Miller (2009) decompose the activity
choice in two parts and consider that the goal-achievement utility impacts activity program
generation and process utility is included in the activity scheduling. In the activity-schedule
approach, the model is decomposed in three levels: the activity pattern model, the tour-level
models and the trip-level models (Shiftan and Ben-Akiva, 2011).

Our goal is to merge the estimation of the activity pattern and the tour-level models. Here,
we describe the main variables entering the definition of the utility for sequences of activity
episodes.





     

2.3.1 Time of day preference

The time-of-day element of the utility represents the variation in gain from performing the
activity at different periods of time (“when”-dimension). Ettema and Timmermans (2003), Joh
et al. (2004), Jenelius et al. (2011), Fu and Lam (2014) assume that the marginal utility follows
an unimodal function, increasing first for a warming up phase and decreasing after reaching
a saturation point. Ettema et al. (2004) propose to use a Cauchy distribution to express the
marginal utility.

2.3.2 Satiation effect

The utility of an activity episode increases with time, while marginal utility of activity partici-
pation decreases (Yamamoto and Kitamura, 1999, Ettema et al., 2007, Pinjari and Bhat, 2010,

Habib, 2011). Satiation1 expresses a fatigue effect (“how long”-dimension). In Habib (2011), the
utility of time expenditure is multiplied by 1

α
(tα − 1), with α the satiation parameter, specified as

α = 1 − exp(−τy). In practice, α depends on a constant per activity type and on the time-of-day.
Ettema et al. (2007) use a logarithmic function for the fatigue effect, ηk ln(t). ηk is specific to the
activity type. The corresponding marginal utility is ηk

t .

2.3.3 Schedule constraints

Time of day preference and fatigue effect have been used in several papers (Ettema and Timmer-
mans, 2003, Jenelius et al., 2011). Ettema et al. (2007) add schedule constraints in the utility
function, inspired by Small (1982). First introduced by Vickrey (1969), scheduling costs explain
the choice of departure time (e.g., Arnott et al., 1990, 1993). Small (1982) defines the utility of
trip departure time as a function of travel time and schedule delay:

V = αtt + γeSDE + γlSDL (1)

where tt is the travel time, SDE is the early schedule delay and SDL is the late schedule delay.
Schedule delays are defined as the difference between the preferred arrival time t∗ and the actual

1Researchers in the transportation research community use “satiation” in order to express the decreasing marginal
returns in activity modeling literature. We comply with this usage. Still, it must not be confused with the
non-satiation assumption of preferences in standard microeconomics, stating that more is always better, or more
precisely that, regardless of the individual’s comsumption, an arbitrarily small quantity of a good is generating
positive utility. For a proper use of “satiation” in transportation research, see Kockelman (1998, 2001).





     

arrival time ta:

SDE = max(t∗ − ta, 0) (2)

SDL = max(ta − t∗, 0) (3)

Schedule delay approach introduces constraints in the schedule, such as a train departure time,
preferred time to start working, or beginning of courses. They are a mathematical expression
of coupling constraints as defined by Hägerstraand (1970). Ettema et al. (2007) and Hess et al.

(2007) include schedule delay in models of choice of activity patterns. This approach has some
limitations. It assumes a linear, yet asymmetric, effect of being early or late. More recent works
propose non-constant marginal utilities for the scheduling preferences Tseng and Verhoef (2008).
It needs anchor points t∗ to be known.

2.4 Correlation between activity patterns

The correlation among alternatives (i.e., paths) is a well-known issue in route choice modeling
when using random utility models. The similarity between two paths is usually measured as
physical overlap (Vovsha and Bekhor, 1998). Frejinger and Bierlaire (2007) decompose the
strategies to address this issue in two categories of models: deterministic correction (C-Logit
models (Cascetta et al., 1996), Path Size Logit (Ben-Akiva and Bierlaire, 1999)) and explicit
modeling of correlation in the error term (Cross Nested Logit (Lai and Bierlaire, 2014), Error
Component models (Bolduc and Ben-Akiva, 1991)). The first category is the most frequent and
the simpler to compute.

The Path Size Logit consists of including an attribute, called Path Size (PS), in the deterministic
part of the utility, in order to correct for overlapping paths. It is derived from aggregation of
alternatives (Ben-Akiva and Lerman, 1985, ch.9), where the elemental alternatives are the paths
and the aggregate alternatives are the links. In the route choice context, the size of the aggregate
alternatives, i.e., a link, equals the number of paths using the link (see Frejinger and Bierlaire
(2007) for a detailed development).

In activity choice context, utility is related to time of day, satiation and schedule delay (Sec-
tion 2.3). All these parameters are defined for a given activity type (e.g., shopping). In the
Activity Schedule approach, Bowman (1998, p.25) mentions that patterns sharing primary
purpose are probably correlated and let it as a future research. Primary activity is defined as the





     

most important activity of the day, either by asking the respondents in a survey (Antonisse et al.,

1986) or by counting the number of activity episodes in a tour and using deterministic priority
rules from other studies when not available from the survey (Bowman and Ben-Akiva, 2001).
Note that when deterministic rules cannot discriminate between different activity purposes, the
activity of longer duration is defined primary.

As a general conclusion, this literature review for models of activity choice shows the need for
modeling an explicit pattern utility with timing dimension (start time and duration). Consider-
ing simultaneously the order, timing and duration of activity-episode patterns generates very
large choice sets. Large choice sets have been managed with discrete-continuous approaches.
Importance sampling techniques have been recently improved and are an interesting approach,
but have not been implemented yet. The most fundamental component of activity pattern utility
are the time-of-day preference for activity types and a decreasing marginal utility for a given
activity episode. Since 1998, correlation between activity patterns have been detected as an
issue but no answer has been given to it to our knowledge.

3 A path choice approach to activity modeling

Our approach to activity-based travel demand modeling decomposes the behavior in two steps.
First, a path choice approach models how people choose their activity type in time, taking into
account the type of activities, their sequence and their timing/duration. Once the activity type,
sequence and timing are chosen, a second step consists in modeling destination choice (e.g.,
choosing a restaurant, knowing the activity type: eating). We present here only the first step,
the choice of activity sequence. A destination choice model applied to the same data set can be
found in Tinguely et al. (2015).

There are mathematical and behavioral motivations for this decomposition. Mathematically, the
problem is complex. The number of possible destinations in a given area is usually large. The
number of sequences of destinations is larger. Including the duration spent at destination makes
the problem definitively too large and intractable. Behaviorally, the choice of activity type and
time of day precedes the choice of destination.

3.1 Representation of activity sequence: activity network and path

An activity network represents the choice set and contains all possible activity sequences. It is
discrete with respect to activity typesA1,A2, ...,AK and time τ ∈ 1, 2, ...,T . It is composed of





     

links and nodes. NodesAk,τ represent the performance by the individual of an activity type k for
a unit of time τ. At a given unit of time τ, the number of nodes represent the available activity
types K. There are two special nodes, start node s and end node e. They represent the beginning
and the end of the observed activity pattern. In total, the activity network contains KT + 2 nodes.
Edges connect some nodes and represent the fact that they are successively performed. s is
connected to all nodes at the first time unit. All nodes at the last time unit are connected to e.
All nodes of a given time unit t are connected with the nodes corresponding to the next time unit
t + 1; it represents the choice of changing activity type or maintaining the activity type for one
more time unit. In total, the activity network contains 2K + K2(T − 1) edges.

· · ·

· · ·

...
...

. . .
...

· · ·

s e

A1

A2

...

Ak

Activity types Activity network

1 2 · · · T Time units

Figure 1: The activity network

The activity network is a representation of the universal choice set. The first and last time units
represent the period of time under observation (e.g., 4am and midnight for a day).

Activity pathsA1:T are the representation of activity sequences in an activity network. Activity
paths are the alternatives of the choice process. Typical attributes from the tour-based activity-
pattern model, such as number of tours per day or number of stops in a tour, can easily be
included in the utility of an activity path. Since we model all activity episodes at once when
describing them as activity paths, our modeling approach gives the opportunity to interact activity
pattern model attributes (e.g., number and purpose of tours, stops per tour) with tour-level models
(e.g., timing of main activity).

3.2 Choice set generation

The universal choice set contains KT alternatives. With a large temporal resolution T , a complete
enumeration of all paths and the estimation of a choice model with the universal choice set





     

is infeasible. Importance sampling allows to estimate discrete choice models in the case of
an extremely large choice set but the sampling probabilities must be known in order to get
consistent estimators.

The Metropolis-Hastings algorithm defined by Flötteröd and Bierlaire (2013) samples paths
according to a given distribution without normalizing it. Only target weights are requested. A
Markov chain with a predefined stationary distribution is generated by randomly modifying
paths between an origin and a destination. Splice and shuffle operations on the paths are made
such that the paths appear with the frequency specified by the weights.

Weights can be defined for each link, and then added up, or defined directly for the whole
path. As explained in Frejinger and Bierlaire (2010), “the sample should include attractive

alternatives” in order to provide efficient estimators. In the context of activity choice modeling,
we propose to use the frequency of observed nodes and the frequency of activity-episode lengths
in the activity network as a measurements of the attractive alternatives.

3.2.1 Node attractivity

The attractivity of a node in the activity network for choice set generation purpose is defined by
using all observed paths in the network. In the route choice context, Chen (2013) calls it the
observation score. It is defined here as the sum of all observed path through a given node v.∑
A1:T∈P

I(v ∈ A1:T ) (4)

where I(v ∈ A1:T ) is an indicative function with value 1 if v is a node of activity pathA1:T and
0 otherwise, and P is the set of all observed activity paths. In order to keep the shortest path
formulation from Flötteröd and Bierlaire (2013), node cost δv for node v can be defined as:

δv(v) = max
k=1,...,K
τ=1,...,T

( ∑
A1:T∈P

I(Ak,τ ∈ A1:T )
)
−

∑
A1:T∈P

I(v ∈ A1:T ) + 1 (5)

The fact that the Metropolis-Hastings algorithm is based on shortest path is not an issue regarding
the length of the activity path, since the number of time units for an activity pathA1:T is always
T . The Metropolis-Hastings algorithm simply samples the activity paths with the most attractive
nodes, i.e., the most attractive activity types at a given time.





     

3.2.2 Activity-episode length attractivity

Node attractivity does not suffice to define the most attractive and realistic paths. It defines the
most attractive path as the most visited activity type at each time unit. Path sampling using only
node attractivity risks to jump too often from one activity type to another, or on the contrary to
stay in the same activity type for a long period, neglecting the satiation effect mentioned in the
literature (see Section 2.3.2).

We define an activity episode a = (Ak, τ
−, τ+) in the activity network as an activity typeAk that

the user is performing from a start time τ− to an end time τ+. The length of an activity episode a

is |a| = τ+ − τ− + 1. An activity pathA1:T contains several activity episodes aA1:T .

The attractivity of an activity episode a is defined as the number of observed activity episodes
aA1:T with same length |a| and same activity type k in all observed pathsA1:T ∈ P in the activity
network:∑
A1:T∈P

∑
aA1:T ∈A1:T

I(|a| = |aA1:T |)I(k = kA1:T ) (6)

The activity-episode length attractivity of a generated path Γ is defined as the sum of the
attractivity of each activity episode aΓ in this path. Similarly than in Eq. 5, the shortest path
formulation is maintained by defining path cost δΓ using the maximum of activity-episode length
attractivity:

δΓ(Γ) = max
( ∑

aΓ∈Γ

∑
A1:T∈P

∑
aA1:T ∈A1:T

I(|aΓ| = |aA1:T |)I(k = kA1:T )
)

−
∑
aΓ∈Γ

∑
A1:T∈P

∑
aA1:T ∈A1:T

I(|aΓ| = |aA1:T |)I(k = kA1:T ) (7)

By adding the attractivity of activity episodes using path cost δΓ in the weights of the Metropolis-
Hastings algorithm, the generated activity paths in the choice set approximate the observed
behavior with respect to satiation. The total cost δ(Γ) is:

δ(Γ) =
∑
v∈Γ

δv(v) + rδΓ(Γ) (8)

where r represents the ratio between path cost δΓ and node cost δv. This ratio is independent of
the number of observations and of the number of time units.





     

The target weight is an geometrically decreasing function exp(−µδ(Γ)) of the total cost δ(Γ)
of the path, as used in Flötteröd and Bierlaire (2013). µ is a scale parameter controlling for
the deviation from the shortest path in the path sampling. If µ = 0, the Metropolis-Hastings
algorithm samples paths uniformly, independently of their cost; if µ→ ∞, only the shortest path
is sampled (with cost δS P). µ depends on the level of cost, varying with the number of activity
types and of time units in the activity network, and with the total number of observations. As
described in Flötteröd and Bierlaire (2013), the Metropolis-Hastings algorithm can sample a
path of cost ζδS P with half the probability of the shortest path, using a single scale-invariant
parameter ζ:

µ =
ln 2

(ζ − 1)δS P
(9)

If ζ → ∞, the Metropolis-Hastings algorithm samples paths uniformly, independently of their
cost; if ζ = 1, only the shortest path is sampled. In this paper, we report the scale-invariant
parameterζ.

It needs to be stressed that the activity network is cycle-free and the only path between the
upstream node and the downstream node of every link is the link. Thus, it complies with the
requirements in Flötteröd and Bierlaire (2013), independently of definition of the target weights.
Another requirement in the algorithm implies that if two paths have the same weight, only one
is sampled. The total cost for two different activity paths are equal with probability almost
surely equal to zero. This situation never appears in the validation and the case study presented
below.

For each observation, the choice set Ci contains the output of the Metropolis-Hastings sampling
of paths and, if not already included, the chosen alternative.

3.3 Sampling correction in the utility

We propose a choice modeling framework for activity paths. This framework uses the choice set
generated in the previous section and corrects for importance sampling. The structure of the
utility function is described.

We assume the choice set to be the universal choice set containing all possible paths between
s and e in the activity network. The sampling strategy for choice set generation presented in
Section 3.2 requires the deterministic part of the utility to be corrected in order to estimate
unbiased parameters (McFadden, 1978). According to Frejinger et al. (2009), a sampling





     

correction term ln kΓn
q(Γ) must be added to the utility function for activity path Γ, where kΓn is the

number of times activity path Γ is drawn in Ci and q(Γ) is the sampling probability of path Γ.

The sampling probability q(Γ) is available using the unnormalized target weights b(Γ) but require
full enumeration for normalization: q(Γ) =

b(Γ)∑
Γ′∈U b(Γ′) . In practice, the normalizing sum cancels

out in the logit formulation and b(Γ) can be used instead of q(Γ).

The utility usually includes the time of day preference, the satiation effect and the schedule delay,
as described in Section 2.3. In this case, the path utility depends on the utilities of individual
nodesAk,τ and on the utilities of the activity episodes a of the activity path. The utility V(Ak,τ)
of a node Ak,τ represents the individual marginal utility from allocating one time unit to a
certain activity type. It corresponds to the time-of-day utility and depends on both the activity
type k and the time interval τ. It can be generally expressed as βk,τIk,τ, where Ik,τ is a dummy
variable (with value 1 if the activity path include node Ak,τ and 0 otherwise) and βk,τ is the
corresponding parameter. In practice, some β’s might be equal. The utility V(a) of an activity
episode a includes the satiation effect and the schedule delay.

Our modeling framework also gives the opportunity to add attributes that are not link-additive,
such as the repetition of certain activity types in the activity path, or the structure of the activity
path.

Parameters can be interacted with socioeconomic variables. For identification purpose, the
time-of-day preference parameters βk,τ for one activity type k must be fixed.

The deterministic part of the utility correcting for the sampling of alternatives is:

µ

( K∑
k=1

T∑
τ=1

V(Ak,τ) +
∑

a∈A1:T

V(a) + V(Γ)
)

+ ln
kΓn

b(Γ)
(10)

Concrete instances of node utility V(Ak,τ), activity-episode utility V(a) and activity path utility
V(Γ) are presented in the validation section and in the case study below.

3.4 Activity path size for correlation between activity paths

The Multinomial Logit (MNL) model is restricted by the Independent from Irrelevant Alternative
(IIA) property. It might not be appropriate in the activity path approach since activity paths share





     

unobserved attributes due to overlaps. Overlaps correspond to performing the same activity type
at the same time and might be correlated. In this section, we first show that the traditional Path
Size correction term cancels out in the activity path approach and then propose two different
deterministic corrections for correlation, the Primary Activity Path Size (PAPS) and the Activity
Pattern Path Size (APPS), for the utility of overlapping activity paths.

The choice of an activity path can be seen as an aggregation of alternatives (about aggregation
of alternatives, see Ben-Akiva and Lerman, 1985, ch.9). The elemental alternatives are the
activity paths, and the aggregate alternatives are the nodes in the activity network. In the route
choice context, the Path Size formulation defines the size of an aggregate alternative (i.e., a
link) as the number of paths using the link (Frejinger and Bierlaire, 2007). The motivation for
this definition of size is related to the assumption that a physical overlap “measures” shared
unobserved attributes. In the activity path context, the number of paths using a node is constant,
KT−1, due to the structure of the activity network, and so the traditional Path Size formulation
from route choice leads to a constant correction term for each alternative and consequently no
correction. Fundamentally, this result comes from the symmetry of the activity network and
the hypothesis that duration of the same activity type at the same time of day is a measure of
similarity, i.e., one replaces physical shared length (overlap) from the route choice context by
shared time length (duration) for a given activity type at a given time of day.

Let’s assume that similarity for activity patterns is measured through shared primary activity
purpose and pattern (Bowman, 1998). Two formulations are possible, the Primary Activity Path
Size (PAPS) and the Activity Pattern Path Size (APPS).

3.4.1 The Primary Activity Path Size (PAPS)

Each path has a primary activityAp, defined as the relative majority of nodes, i.e., the longest
duration. Let’s define Ci as the choice set of individual i. We denote the subset Cp,i ⊂ Ci of
paths with primary activityAp. We define the size MAk,τ of nodeAk,τ as the number of paths
using nodeAk,τ with primary activity beingAp:

MAk,τ =
∑
Γ∈Cp

δAk,τ,Γ (11)

where δAk,τ,Γ is the node-path incidence variable, with value 1 if path Γ contains nodeAk,τ and 0
otherwise.

Computing MAk,τ requires first to determine if nodeAk,τ corresponds to the primary activityAp





     

(i.e., k = Ap). If this is the case,

MAk,τ =

[
xT−1

(T − 1)!

]∑
j≥0

x j−1

( j − 1)!

(
1 + x +

x2

2!
+ · · · +

x j−1

( j − 1)!

)K−1

(12)

where the notation [zn] f (z) denotes the operation of extracting the coefficient of zn in the formal
power series f (z) =

∑
fnzn in analytical combinatorics (Flajolet and Sedgewick, 2002, p.19). By

the theory of exponential generating functions, the number of paths with a relative majority of
nodes corresponding to the primary activityAp and a fixed node corresponding to the primary
activity Ap can be determined by choosing T − 1 nodes with j − 1 of these nodes being the
primary activityAp and a maximum of j − 1 other activity types for the remaining nodes. In
this way, there are j nodes corresponding to primary activityAp and a maximum of j − 1 nodes
with one of K − 1 other activity types.

In the case when node Ak,τ does not correspond to the primary activity Ap, the size MAk,τ of
node Ak,τ can be computed using the same reasoning: choosing T − 1 nodes with j of these
nodes being the primary activityAp, a maximum of j− 2 for the activity type k of the nodeAk,τ

and a maximum of j − 1 nodes for the K − 2 remaining activity types:

MAk,τ =

[
xT−1

(T − 1)!

]∑
j≥0

x j

j!

(
1 + x +

x2

2!
+ · · · +

x j−1

( j − 1)!

)K−2 (
1 + x +

x2

2!
+ · · · +

x j−2

( j − 2)!

)
(13)

According to the theory on aggregation of alternatives, the utility associated with nodeAk,τ is
defined by

UAk,τ,i = V̄Ak,τ,i +
1
µ

ln MAk,τ + εAk,τ,i (14)

where V̄Ak,τ,i = 1
MAk,τ

∑
Γ∈Cp

VΓ,i is the average deterministic utility of paths using nodeAk,τ.

The contribution of a nodeAk,τ for size correction of a path is 1
µ

ln 1
MAk,τ

. When assuming that
the size is proportional to the duration of the path, we define the Primary Activity Path Size
(PAPS) as

PAPSA1:T =
1
T

∑
Ak,τ∈A1:T

1
MAk,τ

(15)

Making the size proportional to the duration introduces a term 1
T and Eq. 10 becomes





     

µ

( K∑
k=1

T∑
τ=1

V(Ak,τ) +
∑

a∈A1:T

V(a) + V(Γ)
)

+ ln
kΓn

b(Γ)
+ βPAPS ln PAPSAk,τ (16)

with βPAPS > 0.

3.4.2 The Activity Pattern Path Size (APPS)

Assuming that similarity for activity patterns is measured through shared pattern, correlation
between paths can be deterministically corrected by using the number of paths with similar
pattern through a nodeAk,τ as the size MAk,τ of this node.

We define the pattern p of an activity path as the ordered sequence of activity types of the
activity episodes, without taking duration into account, e.g., an activity path Home-Home-
Home-Work-Work-Work-Work-Work-Shop-Home-Home corresponds to the activity pattern
Home-Work-Shop-Home. Let’s further define |p| the number of elements in pattern p, |pk| the
number of times activity type k appears in pattern p,

For the Activity Pattern Path Size, the size of nodeAk,τ is:

MAk,τ =

|pk |∑
i=1

(
τ − 1
Li − 1

)(
T − τ
|p| − Li

)
(17)

where Li is the index of the ith occurence of activity type k in pattern p. This can be seen as the
count of decomposing the time units before and after the considered node into the subpatterns
containing the pattern before and after the considered node.

The corresponding Activity Pattern Path Size is:

APPSA1:T =
∑
A∈A1:T

1
MAk,τ

(18)





     

4 Validation with synthetic data

We present results with synthetic data, including how we generated the synthetic data, the
activity network and the utility function used (Section 4.1), the sampling of paths (Section 4.2)
and the results of the estimation using importance sampling (Section 4.3).

4.1 Synthetic data

The activity network used for the validation contains 3 activity types and 6 time units (Fig. 2). It
contains 729 possible activity paths.

s e
Activity type 1

Activity type 2

Activity type 3

Activity types Activity network

Ti
m

e u
ni

t 1
Ti

m
e u

ni
t 2

Ti
m

e u
ni

t 3
Ti

m
e u

ni
t 4

Ti
m

e u
ni

t 5
Ti

m
e u

ni
t 6

Figure 2: The activity network for validation.

Node utility V(Ak,τ) =
∑K

k=1
∑T
τ=1 βk,τIk,τ with β1,1 = β1,2 = β1,5 = −0.5, β1,3 = β1,4 = β1,6 = 1.5,

β2,1 = β2,2 = β2,3 = −1, β2,4 = β2,5 = β2,6 = 2 and β3,τ = 0 ∀τ.

Satiation effect is expressed here as ηk ln(|a|), with η1 = 2, η2 = 1.3 and η3 = 0.8. Early and
late schedule delays for activity type 1 are computed with γe = −1.2 and γl = −1.8. The
deterministic utility of activity pathA1:T is:

V(A1:T ) =

K∑
k=1

T∑
τ=1

V(Ak,τ) +
∑

a∈A1:T

V(a)

=

K∑
k=1

T∑
τ=1

βk,τIk,τ +∑
a∈A1:T

(
ηk ln(|a|) + γe max(t∗ − τ−, 0) + γl max(τ− − t∗, 0)

)
(19)





     

Figure 3: Value of node utility V(Ak,τ) as a function of activity type k ∈ {1, 2, 3} and time unity
τ ∈ {1, 2, ..., 6}. Node utility is fixed to 0 for activity type 3 for identification purpose.
Node utility is first low and then high for activity type 2 (e.g., morning and afternoon
effect). Node utility is varying more for activity type 1 (e.g., lunch and dinner time in
a restaurant).

9 parameters are defined in total. The preferred time t∗ is randomly generated for each individual
between the first and the last time units, t∗ = [1, 6]. 2’000 synthetic observations of the chosen
activity paths are generated assuming a logit model with utility as in Eq. 19 and εiΓ distributed
Extreme Value with scale 1 and location 0.

A model was estimated on these synthetic data with a full choice set (729 alternatives) in order
to validate the generated synthetic data. Results are shown in Table 2. The last column is the
t-test against the true value. It shows that the results are not significantly different from their
true value, and therefore the synthetic data are valid.





     

Parameter True value Estimate Std. error t-test

βlow,1 -0.5 -0.681 0.109 1.66
βhigh,1 1.5 1.42 0.0928 0.86
βlow,2 -2.5 -2.63 0.103 1.26
βhigh,2 2.0 1.88 0.115 1.04
η1 1.8 1.97 0.189 0.90
η2 1.3 1.48 0.194 0.93
η3 0.8 0.688 0.135 0.83
γe -2.2 -2.15 0.0633 0.79
γl -2.8 -2.82 0.141 0.14

Table 2: Estimated values of the parameters with full choice set and synthetic data (2’000
observations).

4.2 Sampling of paths

The full choice set can be used in this example, but in practice, with more activity types and
more time units, it is not the case anymore. We sample paths with the Metropolis-Hastings
algorithm described in Section 3.2, using total cost δ(Γ) (Eq. 8) to define the target weight, with
ζ = 1.3 and r = 0.3.

Each successive state of the MH algorithm is very likely to be similar to the previous one. This
similarity stabilizes with the distance d between iterations. Stabilization means independence of
the sampled paths. A similarity measure is defined in Flötteröd and Bierlaire (2013):

φ(d) =
1
K

K∑
κ=1

|Γk ∩ Γk+d|

1
2 (|Γk| + |Γk+d|)

(20)

where |Γk ∩ Γk+d| is the number of identical nodes in the paths generated in iterations k and k + d.
Fig. 4 shows that the similarity is around 0.65 after a warming-up period. The similarity is still
large once stabilized, because paths overlap very often in such a small network. Similarly to
Flötteröd and Bierlaire (2013), we fit a linear regression model on 10 consecutive similarity
values φ(d), ..., φ(d + 9) for consecutive distances d, ..., d + 9. We assume the sampled paths to
be independent when the absolute slope of the linear model is below 10−5. For the synthetic
data, independence is reached for a distance d = 1047 with ζ = 1.3 and r = 0.3.

For the validation with synthetic data, we choose a conservative distance d = 1200 between
iterations.





     

Figure 4: Similarity measure as a function of the distance. 106 paths were generated from the
synthetic data, with ζ = 1.3 and r = 0.3.

4.3 Estimation using importance sampling

We generate 20 elements in the choice set for each observation with ζ = 1.3, r = 0.3 and
d = 1200 and we estimate a logit with the following utility function:

µ
(
V(A1:T )

)
+ ln

kΓn

b(Γ)
(21)

Note that the sampling correction term ln kΓn
b(Γ) is not multiplied by the scale parameter µ. Sampling

correction does not depend on the variance of the data. For identification, we need to fix one
parameter to its true value in V(A1:T ) (say βlow,1). By estimating µ, the sampling correction
term is not scaled and the parameter estimates have the same scale than the true ones for
comparison.





     

Results are evaluated by counting the number of parameters that are not significantly different
from their real value. The total number of estimated parameters is 9. Results are shown in
Table 3.

Parameter True value Estimate Std. error t-test

βhigh,1 1.5 1.73 0.623 0.37
βlow,2 -2.5 -2.92 0.849 0.49
βhigh,2 2.0 1.9 0.633 0.16
η1 1.8 2.3 0.577 0.87
η2 1.3 2.01 0.65 1.09
η3 0.8 0.893 0.402 0.23
γe -2.2 -2.67 0.845 0.56
γl -2.8 -3.54 1.11 0.67
µ 1.0 0.9 0.275 0.36

Table 3: Estimated values of the parameters with importance sampling and 20 generated elements
in the choice set (ζ = 1.3, r = 0.3).

All parameters are not significantly different from their true value. It shows that parameters
can be properly estimated using the Metropolis-Hastings sampling of paths with node and
activity-episode length attractivities and correcting for importance sampling.

4.4 Sensitivity analysis

This section shows the sensitivity of the results with respect to the number of elements in the
choice set, the scale-invariant parameter for the Metropolis-Hastings sampling of paths ζ, and
the ratio r between path cost and node cost.

Section 4.3 shows above that all parameters are not significantly different from their true values
when generating 20 elements for the choice set (ζ = 1.3, r = 0.3). Fig. 5 presents the results
for choice sets with 1, 2, ..., 50 elements. For each number of elements included in the choice
set between 1 and 50, the Metropolis-Hastings sampling of paths ran 5 times. With 1 element
in the choice set, one of the 5 estimated models has 9 estimates that are significantly different
from their true value; with 2 elements in the choice set, 2 of the 5 estimated models has 9
estimates that are significantly different from their true values; with 5 elements in the choice
set, 1 estimated model has 9 estimates significantly different from their true values and 1 other
model with 1 estimate significantly different from its true value. All 245 other models do not
have estimates that are significantly different from their true values.





     

Figure 5: Number of non-significantly different parameters compared to their true values as a
function of the number of elements in the choice set (ζ = 1.3, r = 0.3). For each
number of elements in the choice set per observation, 5 choice models were estimated
based on different random outputs from the Metropolis-Hastings sampling of paths.

Figure 6 shows the number of non-significantly different parameters compared to their true
values depending on the scale-invariant parameter for the Metropolis-Hastings sampling of
paths ζ. For each value of ζ ∈ {1.1, 1.2, ..., 1.9}, 5 models were estimated with 10 elements
in the choice set per observation, 5 models were estimated with 30 elements in the choice set
and 5 models were estimated with 50 elements in the choice set. When ζ 6 1.2, the sampled
paths are very similar to the shortest path. There is not enough variety in the choice set to
estimate properly the parameters. In this case, the scale of the choice model µ is underestimated.
Oppositely, when ζ > 1.8, importance sampling do not consider attractivity of the generated
paths enough. With ζ = 1.3, all parameters are non-significantly different compared to their
true values. With 10 elements in the choice set, all parameters are properly estimated only for
ζ = 1.3, while with 20 or 50 elements in the choice set, zeta can vary between 1.3 and 1.5.

Figure 7 shows the number of non-significantly different parameters compared to their true values
depending on the ratio r between path cost and node cost. For each value of r ∈ {0.1, 0.2, ..., 0.5},





     

Figure 6: Number of non-significantly different parameters compared to their true values as a
function of the scale-invariant parameter of the Metropolis-Hastings sampling of paths
ζ (r = 0.3). For each value ζ ∈ {1.1, 1.2, ..., 1.9} and each number of elements in the
choice set per observation, 5 choice models were estimated based on different random
outputs from the Metropolis-Hastings sampling of paths.

5 models were estimated with choice sets of 10, 20 or 50 elements per observation. When
r = 0.5, the impact of path cost over node cost is too large. For all other values, all parameters
are correctly estimated when there are 10 or 100 elements in the choice set.

Based on this sensitivity analysis, it is recommended to generate more than 16 elements in the
choice set per observation. Increasing the number of elements decreases the standard errors
of the parameters and increases the chances to estimate parameters that are not significantly
different from their true values. With a large enough choice set, the parameters used in the
Metropolis-Hastings sampling of paths (ζ) and in the definition of path cost (r) are stable.





     

Figure 7: Number of non-significantly different parameters compared to their true values as
a function of the ratio r between path cost and node cost (ζ = 1.5). For each value
r ∈ {0.1, 0.2, ..., 0.5} and each number of elements in the choice set per observation, 5
choice models were estimated based on different random outputs from the Metropolis-
Hastings sampling of paths.

5 Pedestrian case study on a campus

The choice of an activity pattern also trigger people’s behavior in pedestrian facilities (Bierlaire
and Robin, 2009). Demand management measures can be applied in pedestrian facilities, such
as changing schedules (train in train stations, planes in airports, concerts in music festivals or
class schedules in universities). Our model is particularly suitable for pedestrian facilities, since
it does not assume a tour structure nor a “home” activity type.

In particular, transport hubs (e.g., train stations or airports) are key nodes of a multimodal
transport system (with buses, metro, car and bike sharing). Train stations are located in the city
centers and include shops and services. All these activities combined with the growth in the
number of passengers increase pedestrian flows and threaten the functioning of the train station.





     

Understanding demand for activities is of utmost importance to define appropriate planning
policies.

As a proof of concept, we apply our methodology to WiFi traces collected on the EPFL campus.
EPFL campus approximately hosts 13’000 people per day. Similarly to transport hubs, some of
them follow schedules (class schedules instead of train schedules) and perform several different
activities, such as going to class, having lunch, etc.

Section 5.1 describes the data used in this case study, Section 5.2 describes the choice set
generation process and the choice model, and results are presented in Section 5.3.

5.1 Data source and activity network

We collected data as defined in Danalet et al. (2014). Campus users authenticate themselves
on the WiFi network through WPA using a Radius server. Accounting is one of the process on
the Radius server. It allows to associate a MAC address with a username. Each measurement
was associated with a unique identifier and a category, such as employee or civil engineering
student, bachelor. Data were then anonymized by deleting the MAC address. Details about
the data collection campaign and data cleaning can be found in Danalet and Bierlaire (2014),
Section 4.1.

The Bayesian approach described in Danalet et al. (2014) was then applied to the raw WiFi
traces in order to detect activity-episode sequences. It merges WiFi traces with data from the
map of the campus, measures of attractivity of each destination and time constraints. The precise
definition of these data, and in particular of attractivity measures, can be found in Danalet and
Bierlaire (2014).

We assume 8 activity types: classrooms, shops, offices, restaurant, library, lab, other and not
being detected. The types “Office”, “Classroom” and “Lab” are based on norm DIN 277 defined
by the Deutsches Intitut für Normung. The types “Shops”, “Restaurant”, “Library” and “Other”
are extracted from a list of points of interest from http://map.epfl.ch.

There are T = 24 time units in the activity network, from 7am to 7pm, from :00 to :15 and from
:15 to :00 at each hour. This structure with 15-minute and 45-minute time intervals is motivated
by the time structure of classes at EPFL, mostly starting at :15 and finishing at :00 every hour. It
exemplifies the flexibility in the definition of the activity network, in order to focus on a certain
time of the day or to adapt to the behavioral time structure.



http://map.epfl.ch


     

5.2 Choice set and choice model

Conversely to synthetic data, the full choice set cannot be enumerated (824 paths) in this
case study. The Metropolis-Hastings algorithm is used with node and activity-episode length
attractivity, as described in Section 3.2, with ζ = 1.3 and r = 0.3, the best values according
to the synthetic data experiment. A distance d = 500′000 between iterations is defined based
on the similarity measure presented in Section 4.2 (Fig. 8). 100 paths have been generated
per observation as the choice set, sampling paths every d iterations of the Metropolis-Hastings
algorithm. The shortest path for connecting the insertion node in the splice operation of
the Metropolis-Hastings algorithm uses node attractivity only (since activity-episode length
attractivity is not link-additive).

Figure 8: Similarity measure as a function of the distance. 106 paths were generated using node
and activity-epiosde length attractivity, with ζ = 1.3 and r = 0.3.

We estimate a logit model with sampling correction, as described in Section 3.3. No activity path
size (Section 3.4) has been included in the model due to lack of data variability, as estimation
results show below.





     

5.3 Estimation results

Estimation results are presented in Table 4 for two different choice sets. The first column
presents results with a choice set of 100 elements selected by simple random sampling, similar
to the first step in the strategy described by Lemp and Kockelman (2012). The second column
presents results with a choice set of 100 elements selected by importance sampling using the
Metropolis-Hastings algorithm and node and activity-episode length attractivity., similarly to
the methodology presented in Section 3.2 and validated in Section 4.

Simple random sampling Importance sampling
Robust Robust

Coeff. Asympt. Coeff. Asympt.
Description estimate std. error t-stat estimate std. error t-stat

ηClassroom, Shop, Library -0.570 0.206 -2.76 -0.735 0.149 -4.92
ηLab, Restaurant, Office, Other -0.722 0.231 -3.12 -1.02 0.196 -5.20
β3+ lab episodes -0.500 0.106 -4.72 -1.15 0.283 -4.06
β3+ office episodes -0.583 0.167 -3.48 -0.818 0.271 -3.02
β3 restaurant episodes -0.603 0.225 -2.68 -0.720 0.145 -4.98
β4+ restaurant episodes -1.01 0.295 -3.44 -1.57 0.419 -3.74
β3+ shop episodes -0.577 0.175 -3.29 -1.03 0.332 -3.09
βNA 7-9, 17-19, employees 0.165 0.0643 2.56 0.349 0.0707 4.93
βNA 9-17, employees -0.424 0.149 -2.85 -1.27 0.251 -5.05
βNA 8:15-17, students -0.649 0.231 -2.81 -0.909 0.192 -4.73
βNA 17-19, students 0.296 0.107 2.77 0.550 0.244 2.25
βclassroom 8:15-12, 13:15-17, employees -1.46 0.489 -2.99 -1.25 0.400 -3.11
βprimary activity library, students 0.327 0.131 2.50 0.616 0.247 2.50

Number of parameters 13 13
L(β0) −8002.619 −8002.619
L(β̂) −13.244 −10.340
ρ2 0.999 0.998
ρ̄2 0.996 0.997

Table 4: Estimation results for randomly generated choice set and choice set based on node and
length of observations. In both cases, 100 elements were generated per observation. In
total, the two models are estimated on 1734 observations. Importance sampling allows
for more variables to be included in the model. In both cases, the final log-likelihood,
ρ2 and ρ̄2 are very close to 1. It indicates that the choice set does not contain enough
variation to include more variables.

ηClassroom, Shop, Library and ηLab, Restaurant, Office, Other represent the satiation parameter for classrooms,





     

shops, libraries and laboratories, restaurants, office, other, respectively; it multiplies ln(|a|), where
|a| is the duration of the activity episode, similarly to Eq. 19; they are both negative, as expected,
indicating a decreasing marginal utility when duration increases. β4+ classroom episodes multiplies
an indicator variable with value 1 if the activity path contains 4 or more activity episodes
corresponding to the “classroom” activity type; the negative sign expresses the preference for
a limited number of activity episodes in classes in a day. The following 9 variables represent
a similar preference for laboratories, libraries, offices, restaurants and shop activity types.
βNA 13:15-17, students, βNA 7-9, 17-19, employees and βNA 9-17, employees multiplies the number of quarters of
an hour corresponding to the activity type “not being detected” (NA) in the activity path; it
express the preference for not being on campus (NA); students are more likely to be on campus
in the afternoon, while employees are likely to be on campus during office hours and likely not
to be detected on campus early or late in the day. βclassroom 8:15-12, 13:15-17, employees multiplies the
number of quarters of an hour in the activity path corresponding to the activity type “classroom”,
for employees; it is negative, showing a preference of employees not to be in classrooms during
the day. βrestaurant, 12-13:15, students multiplies the number of quarters of an hour in a restaurant
in the activity path during lunch break for students in the utility, showing the preference for
performing such activities during lunch breaks. βoffice-restaurant-office, 12-13:15, employees multiplies an
indicator variable with value 1 if the activity path contains the pattern office-restaurant-office as
a subsequence, with restaurant being during lunch break and possibly with nodes corresponding
to “not being detected” in between; it is positive, showing a preference for this pattern for
employees in their day. βprimary activity library, students multiplies a indicator variable with value 1 when
the total number of quarters of an hour is larger for “library” than for any other activity type in
the activity path; it is positive for students since data were collected during a revision period
before exams. Finally, γlate, students multiplies the late schedule delay SDL = max(ta− t∗, 0), where
t∗ is the class start time (based on the class schedules for the category of students) and ta is the
classroom activity-episode start time (if it happens after the class start time and before the class
end time); it is negative, showing that students prefer to be on time for classes, if they go to
classes.

With our approach, variables that are related to the whole activity path, such as primary activity in
the day (βprimary activity library, students) or patterns (βoffice-restaurant-office, 12-13:15, employees) can be included
in the model. However, with both sampling strategies, the final log-likelihood L(β̂) is close to
zero and the adjusted rho-square ρ̄2 is close to 1. It indicates that the sampled choice sets are
dominated by the chosen alternative. While this is intuitive for the simple random sampling, it
shows that the importance sampling strategy defined before is not sufficient to define a proper
choice set. The current choice set is fully dominated by the observed choice, given the choice
model.

Validation has been performed on this model. 80% of the data have been used for estimation,





     

and the model has been applied to the 20% remaining data. For both simple random sampling
and importance sampling using node and activity-episode length attractivity, results show that all
generated alternatives in the choice set have an almost null probability and the chosen alternative
has a very high probability. This results confirms that the generated alternatives in the choice set
are clearly dominated and not similar enough to the chosen alternative.

When comparing the two models, we see that simple random sampling (SRS) leads to lower t-
statistics. In particular, 6 parameters are not significantly different from 0 (p-value > 0.05). Note
also that βNA 9-17, employees has a positive sign with simple random sampling, which is not intuitive:
it would mean that employees prefer not to be on campus during office hours. Several estimations
were made with simple random sampling (only the first one is shown) and in some cases, the
value of some parameters explode due to the lack of observations in the data corresponding
to the parameter (say β3 lab episodes explodes because there are no or almost no activity path in
the SRS-generated choice set with 3 activity episodes corresponding to a “laboratory” activity
type).

6 Conclusion and future work

Our approach models the choice of activity sequences of individuals and evaluates the attractivity
of the different activity types in time and the satiation effect for each activity type. Our model is
not home-based, nor tour-based. It can adapt to different contexts and activity types. The large
dimensionality of the problem is managed through importance sampling techniques.

An important feature of our approach is that it allows to add in the utility function variables that
are not specific to activity episodes, but are related to the path itself. Patterns can be included in
the utility function and their specific utility or satiation parameters can be estimated.

One key issue of this approach concerns the choice set. The choice set is extremely large and the
full choice set cannot be used. Consideration choice set is very difficult to define. Importance
sampling seems the best strategy to define a choice set based on an a priori measure of the
attractivity of certain paths. In Danalet and Bierlaire (2014), a measure of attractivity was used
to define the weight in importance sampling, based on an aggregate measure of the number of
persons at each time performing each activity type; in this paper, we use the observed data, and
in particular the node and the activity-episode length attractivity. As we show in Section 5, this
strategy does not allow to specify a model predicting activity paths with similar probabilities
than the chosen activity path. This is due to the impossibility to define attractivity such that the
generated activity paths in the choice set are similar enough to the observed activity paths.





     

Lemp and Kockelman (2012) propose to use the choice probabilities of a first model as weight
in importance sampling. With the impossibility to define exogenously the weight in our context,
it seems that their sampling strategy is the best for the activity path choice approach. It will be
explored in future research.
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