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Abstract 

In this paper, we present a preliminary approach for generating different traffic demand 

patterns to analyze the traffic performance of a grid network. The proposed methodology is 

based on the sampling strategy proposed in (Ge and Menendez, 2013), and combined with 

ideas from research on experiment design.  

The proposed algorithm is illustrated using an abstract grid network with bidirectional streets. 

The purpose of this paper is to demonstrate how does this algorithm work for investigating the 

relationship between different spatial distributions of the demand (i.e., geographical position 

where the demand is generated/attracted) and the traffic performances. In this study, we have 

tried multiple magnitude of the total demand (i.e., quantity of the demand) in the network, but 

no variation of the temporal distribution (i.e., time when the demand is generated) is 

considered. Based on the evaluation of the analysis results, we are able to conclude the best and 

the worst traffic demand conditions in terms of traffic performance for the given grid network. 
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1. Introduction 

Traffic scenario generation plays an important role in transportation research. The generation 

of multiple traffic scenarios based on specific events (e.g., incidents, construction work), 

traffic demand patterns, and signal plans can be used in the short-term traffic forecasting, and 

support the traffic control systems to apply the optimal control strategy in advance. 

Furthermore, for a given traffic network, the traffic scenario generation can be employed in 

evaluating the performance of the network under different traffic conditions, and helps the 

transportation planner to explore the robustness of the network design. 

Despite the importance of traffic scenario generation, to the best of the authors’ knowledge, 

the topic has not advanced much in terms of practical applications. In many cases, the traffic 

scenarios are generated manually (e.g., Scott et al., 2006) by practitioners that may omit 

certain important cases. On the other hand, using the brute force approach to generate all 

possible scenarios can be very time consuming for both the scenario generation process and 

the subsequent analysis. Moreover, as some scenarios generated by an exhaustive search may 

only show minor differences between each other, the computation resources could be wasted 

in the assessment of those very similar scenarios. Therefore, the development of an optimal 

approach that generates a limited number of representative scenarios could be very valuable. 

In this paper, we present an efficient approach to generate different traffic demand patterns to 

analyze the traffic performance of a grid network. The proposed methodology is based on the 

sampling strategy proposed in (Ge and Menendez, 2013), which is a recently developed 

approach for sampling parameters for sensitivity analysis. This method is combined with 

ideas from research on experiment design, in which powerful statistical techniques are used to 

screen the valuable experimental data from raw data.  

The proposed algorithm is illustrated using an abstract grid network with bidirectional streets. 

The purpose is to demonstrate how does this algorithm work for investigating the relationship 

between different spatial distributions of the demand (i.e., geographical position where the 

demand is generated/attracted) and the traffic performances. In this study, we have tried 

multiple magnitude of the total demand (i.e., quantity of the demand) in the network, but no 

variation of the temporal distribution (i.e., time when the demand is generated) is considered. 

Based on the evaluation of the analysis results, we are able to conclude the best and the worst 

traffic demand conditions in terms of traffic performance for the given grid network. 

The paper is organized as follows: an introduction of the methodology is given in Section 2; 

the application of the proposed pattern generation algorithm is illustrated with a case study in 

Section 3; the conclusions and suggestions for future work is included in Section 4. 
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2. Methodology 

In general, for a grid network with a certain type of topology, the generation of the traffic 

demand pattern comprises three elements: 

1) Magnitude of the demand: the number of trips generated / attracted at a certain 

location of the network.  

2) Spatial variation of the demand: the variation of the spatial locations for generating / 

attracting the trips. 

3) Temporal variation of the demand: the variation of the time for generating / attracting 

the trips. 

As the goal of this research is to investigate the general algorithm for generating different 

traffic demand patterns, it could be more feasible for us to start with a very simple case. For 

this reason, in this research we only consider an abstract 4-by-4 grid network with 

bidirectional streets. In addition, all the trips generated / attracted in the middle of the link 

(see Fig. 1). Moreover, we assume that there is no temporal variation of the demand 

generation, i.e., the demands are uniformly distributed in terms of time. We further assume 

that the trips between any two zones in the network can be either T or 0 (i.e., no trips). 

Figure 1 The abstract 4-by-4 network considered in this research 
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It is obvious that for a n-by-n grid network, if all the trip zones are located in the middle of the 

link, there are 2n(n-1) zones in total (e.g., in Fig. 1, the total number of zones is 2*4*(4-1) = 

24). If we consider zone i (1 ≤ i ≤ 2n(n-1)) as the trip start zone (i.e., origin), and zone j (1 ≤ j 

≤ 2n(n-1), j ≠ i as no internal trips are considered within a zone) as the trip end zone (i.e., 

destination), for these 2n(n-1) trip zones there are N* = 2n(n-1)*[2n(n-1)-1] = 4n4-

8n3+2n2+2n possible origin-destination (OD) pairs. In the 4-by-4 grid network illustrated in 

Fig. 1 the total number of OD pairs is 552.  

As mentioned before, we have assumed that the trips between each OD pair can be either T or 

0. For a given total magnitude of traffic demand in the network, i.e., N×T with 1 ≤ N ≤ N*, to 

generate the traffic demand patterns that yield the best or worst traffic performance of the 

network, we need to find the relevant combinations of N OD pairs (each of them has T trips 

while the other OD pairs have no trip). 

Due to the high computational cost, an exhaust search or a fully randomized search (such as 

the Monte Carlo process for generating the samples) could be an unfeasible and tedious 

solution. For example, if the total magnitude of the traffic demand is 6T, the number of 

possible combinations of any 6 different OD pairs out of the 552 OD pairs in the 4-by-4 

network is around 3.8*1013. In this case, it could be too time consuming for a normal 

computer to enumerate and evaluate all possible combinations of OD pairs. Note that 

although this process can be accelerated by adopting the parallel computing techniques and/or 

taking the symmetric characteristics of the grid network into account, it is still a very time 

demanding work for a normal computer if considering the total number of possible 

combinations.  

Therefore, a more efficient approach for searching the OD pair is needed. For this reason, we 

propose to borrow some ideas from the research of experiment design, where efficient 

sampling and searching algorithms are systematically studied and developed (e.g., Roupec 

and Popela, 2009). In this study we employ the searching approach as described in (Ge and 

Menendez, 2014), which was originally developed to solve the sampling problem for the 

sensitivity analysis of high dimensional and computationally expensive traffic simulation 

models. The algorithm we adopt in this paper is described in details as below. 

The search of the best and worst demand pattern with N (1 < N < N*) OD pairs starts with 

generating all possible combinations of N*-1 OD pairs from the full set of N* OD pairs. In the 

first step, there are only N* possible combinations that can be enumerated. Then the algorithm 

will evaluate the traffic performance of each combination that contains N*-1 OD pairs, and 

find one combination (i.e., BN*-1) that yields the best traffic performance, and one combination 

(i.e., WN*-1) that yields the worst traffic performance. Then in the second step, the search starts 

with generating the possible combinations containing N*-2 OD pairs out of BN*-1 and WN*-1, 
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and find the best OD pairs combination BN*-2 and worst OD pairs combination WN*-2. This 

process is repeated until only N OD pairs (i.e., BN or WN) are left, and they are considered as 

the best or worst combination. Since in Step k (1 ≤ k ≤ N*-N) the number of possible 

combinations enumerated is only N*-k+1, the total number of possible combination is quite 

limited. In the aforementioned example, to search for the combination of 6 OD pairs, only 

152607 combinations (much less than 3.8*1013) are generated and evaluated if using this 

algorithm. 

Furthermore, since the computational cost for the above algorithm is quite cheap, to make the 

algorithm more robust, we can afford to search multiple combinations of the best or worst OD 

pairs rather than one single combination. In the first step, we will pick the M (e.g., 10) best or 

worst combinations containing N*-1 OD pairs from the whole set, namely, BN*-1
m and WN*-1

m 

(1 ≤ m ≤ M). In the following steps the aforementioned iteration process is performed based 

on BN*-1
m and WN*-1

m. In the end, we can obtain M combinations that contain N potentially best 

or worst OD pairs. In this process, it is possible to use a simple and computationally cheap 

traffic assignment algorithm (e.g., assign all the trips of a certain OD pair to the shortest path) 

in the iterations to derive BN*-1
m and WN*-1

m (m=1, …, M). Afterwards we can apply a more 

accurate but more computationally expensive traffic assignment algorithm such as the 

dynamic traffic assignment based on BN*-1
m and WN*-1

m to refine the results. In this way, it is 

expected to enhance the accuracy for generating the best and worst traffic demand patterns. 

We will illustrate the proposed algorithm with a case study in the next section. 
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3. Case study and results 

3.1 Network design 

As already mentioned, the 4-by-4 grid network with bidirectional streets (see Fig. 1) is used in 

the case study. We assume that the capacity of the link is 1800 veh/h for each direction, and 

each link is 100 m long. Furthermore, the trips between one OD pair for is assumed to be 40 

trips/h, i.e., T = 40 in this case study. 

The layout of the intersections is shown in Fig. 2. There are two types of intersections:  

 4-leg intersection (Fig. 2a) inside the network. Noted that for the incoming traffic, the 

right turn and the through traffic are grouped in one lane, while the other lane is 

dedicated for left turners.  

 3-leg intersection (Fig. 2b) in the peripheral links of the grid network. Noted that in 

the 3-leg intersection the left and right turn, as well as the through traffic are all 

separated in different lanes. 

It should be noted that the links in the network only have one lane per direction, while an 

extra lane is added in intersections in order to separate or combine the traffic. 

Figure 2 The layout of the intersection in the grid network.  

 
 

                                    

 
  

(a) layout of the 4-leg intersection (b) layout of the 3-leg intersection 
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3.2 Traffic assignment model 

As described in Section 2, to make the demand pattern generation more accurate, we separate 

the computation process into two consecutive phases: demand pattern generation (Fig. 3) and 

demand pattern evaluation (Fig. 4).  

Figure 3 Process for demand pattern generation. 
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In the first computation phase for demand pattern generation, the program will search for the 

10 demand patterns (i.e., combinations of OD pairs) that potentially have the best and worst 

performance under certain total demand N*T (N = 1, …, 551). In this phase, we use the 

shortest path algorithm for the traffic assignment. This algorithm applies the Dijkstra's 

algorithm (for details see Dijkstra, 1959) to determine one single route from the origin zone to 

the destination zone that yields the shortest travel distance. Then it assigns all the trips of that 

OD pair to this route. In the intersection, different green times are given to the left turners 

(2.5s) and right turners (22.5s). As a result, when two routes have the same travel distance, the 

traffic assignment will prefer to choose the route with less left turns. It should be noted that 

the shortest path traffic assignment is chosen because of its efficiency in computation, and the 

main purpose of this study is to demonstrate the application of the proposed algorithm for 

demand pattern generation. In other cases if higher accuracy of the traffic assignment is 
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required, a more realistic traffic assignment algorithm may be considered, although the 

process for generating the demand pattern should remain the same. 

Figure 4 Process for the demand pattern evaluation. 
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In the second phase for evaluating the traffic demand patterns, we use the static traffic 

assignment model that follows the approach described in (LeBlanc et al., 1975) using the 

Frank-Wolfe (FW) algorithm (Frank and Wolfe, 1956). The traffic from multiple OD pairs is 

assigned to different routes through an iterative process, and the assignment will stop when 

the user’s equilibrium (Wardrop, 1952) is reached. We apply this algorithm on each of the 

best and worst demand patterns that are found in the first computation phase, and evaluate the 

corresponding performances (see the indicators in Section 3.3). Again, the reason for using 

the static assignment model here is due to its acceptable accuracy and relatively low 

computational cost (Ortigosa and Menendez, 2014). For other studies, the practitioners are 

free to choose more accurate traffic assignment models (Bar-Gera, 2010; Dial, 2006) based on 

their needs, though the evaluation process presented in Fig. 4 should remain the same. 
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3.3 Performance indicator 

In the first computation phase for generating the potential traffic demand patterns, we include 

7 indicators to assess the traffic performance by a certain combination of the OD pairs. These 

indicators are shown in Table 1. 

Table 1 Indicators used for evaluating the traffic performance in the first computation 

phase. 

 
 Rank Name Description 

1 Max flow at intersection 
Maximum flow of the through and turning 

maneuvers at the intersection 

2 Max flow at link Maximum flow travels on the link 

3 Max left turn flow at intersection 
Maximum flow of the left turning 

maneuvers at the intersection 

4 Max through flow at intersection 
Maximum flow of the through maneuvers at 

the intersection 

5 Total travel distance The total distance travelled on links 

6 Average flow at links 
The mean of the flow among links that have 

non-zero flow 

7 Standard deviation of flow at links 
The standard deviation of the flow among 

links that have non-zero flow 

 
The first and second indicators are used to described the maximum flow at different locations 

of the network, the third and fourth indicator are used to describe the traffic demand of certain 

driving manoeuvres at the intersection, and the last 3 indicators are used to describe the 

dispersion of the flow on the links. Moreover, we pick the 10 best or worst potential demand 

patterns according to the priority of the indicators. For example, if two demand patterns have 

the same number of maximum flow at the intersection and links, then the one with more left 

turning maneuvers will be considered in the W set as it is expected to have greater potential of 

causing congestion than the other demand pattern. 

In the second computation phase for evaluating the performance of the chosen demand 

patterns, we have chosen 3 indicators for describing the traffic performance (see Table 2) of 

the network. The first two indicators are the same as those used in the first computation phase. 

The third indicator is used to describe the total travel time in the network, i.e., the sum of the 

travel time on links and intersections. The travel time on links is calculated using the BPR 

function (Bureau of Public Road, 1964): 

0

, , , ,(1 ( / ) )b

i j i j i j i jTT TT a V C   
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where TTi,j is the travel time of link (i, j), TTi,j
0 is the travel time with free flow on link (i, j), 

and Vi,j and Ci,j are respectively the traffic volume and capacity of the link (i, j). In our study 

the parameters a and b are set to 0.15 and 4 respectively. The travel time at intersections used 

the improved delay formulation based on the HCM-2010 formulation (Highway Capacity 

Manual, 2010). For details about the delay formulation, the interested readers are suggested to 

refer to (Ortigosa and Menendez, 2014). 

Table 2 Indicators used for evaluating the traffic performance in the second computation 

phase. 

 
 
 Name Description 

 Max flow at intersection 
Maximum flow of the through and turning 

maneuvers at the intersection 

 Max flow at link Maximum flow travels on the link 

 Total travel time in network 
The total travel time on links and 

intersections 

 

3.4 Results 

3.4.1 Traffic performance 

The traffic performance in terms of the maximum flow at intersections, maximum flow at 

links, and the total travel time in the network for the different traffic demand patterns are 

plotted in Fig. 5. 

Fig. 5a and Fig. 5b show the maximum flow at intersections and links with different number 

of OD pairs in the combination for the worst and best cases. It should be noted that in both 

cases, there are some small oscillations at some places along the maximum flow curve. This is 

due to the randomness in the demand pattern generation, and the use of two different traffic 

assignment models in the pattern generation and evaluation phases phase (see Section 3.3). 

Nevertheless, the comparison between the worst case and best case shows that due to the 

different choices of OD pairs in the combination, there is significant difference of the 

maximum flow even when they have the same total demand. The biggest absolute difference 

in this case happens when almost half of the total OD pairs have trips. This indicates that 

when almost half of the OD matrix is empty, the different spatial distributions of the demand 

can bring high variations to the maximum flow at both intersections and links.  
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Figure 5 The traffic performance for the worst demand patterns and best demand patterns 
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Fig. 5c shows the total travel time in the network due to the worst and best demand patterns. It 

also indicates that in most cases, depending on the spatial distribution of the demand patterns, 

there can be a significant variation of the total travel time in the network. On the other hand, it 

shows that when the number of OD pairs is less than 100 in the combination, the difference of 

the total travel time between the worst case and best case is not very significant. This is 

because when the total demand is low, regardless of the spatial distribution of demand, there 

will be no congestion in the network, and the travel time is just the travel time of free flow. 

When the total demand is beyond a certain value (e.g., 4000 trips/h in this case), the demand 

pattern in the worst case starts to produce congestion at intersections, while there is still no 

congestion in the best case, the difference of the total travel time will become more and more 

significant. This further indicates that for a given network, the choice of the spatial 

distribution of the demand can actually influence the network’s capacity in dealing with the 

congestion. For example, in this case study, the network starts to have congestion when the 

total demand is 4000 trips/h with the worst demand pattern, while for the best demand pattern 

the congestion only starts when the total demand is over 12000 trips/h. In the next section, we 

will present some characteristics of the demand patterns generated for this abstract grid 

network. 

3.4.2 Characteristics of the demand patterns 

To explore the general characteristics of the different demand patterns, we first plot the flow 

distributions on links in the best and worst scenarios with different number of OD pairs. Fig. 6 

shows the flow distributions for the best scenarios (i.e., the 4 sub-plots on the left side) and 

worst scenarios (i.e., the 4 sub-plots on the right side). The number of OD pairs contained in 

the corresponding patterns are 200, 300, 400, and 500 respectively (from top to bottom in Fig. 

6). Moreover, the colour and the width of the link represents the volume of the traffic flow: a 

wide and red link means that link has a high traffic volume, while a narrow and blue link 

means that the traffic volume of the corresponding link is low. 

In both best and worst scenarios, along with the increase of the number of OD pairs (i.e., the 

total demand of the network), the flow grows faster in the internal links (e.g., the links with 

zones 9, 12, 13, and 16, see Fig. 1) than those peripheral links. If cross compare the flow 

distribution between the best and worst scenarios with the same number of OD pairs, it is 

obvious that the links in the worst scenarios always have higher variation of the flow than the 

links in the best scenarios. In addition, the spatial distribution of the flow in the best scenarios 

present significantly better symmetry than the flow in worst scenarios. This indicates that in 

the worst scenarios, the demand is more likely to be asymmetrically distributed in this 

symmetric grid network. On the other hand, the demand in the best scenarios is expected to 

have symmetric distribution, and this is especially true then the total demand is low.  
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Figure 6 Flow distribution under different demand patterns and number of OD pairs  
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To further compare the spatial distribution of the demand patterns in the best and worst 

scenarios, we group the 24 zones in the work into 3 categories according to their locations 

(see Fig. 7): 

 Internal zones: 9, 12, 13, and 16; 

 Middle zones: 5, 6, 8, 10, 15, 17, 19, and 20; 

 External zones: 1, 2, 3, 4, 7, 11, 14, 18, 21, 22, 23, and 24. 

Figure 7 The abstract 4-by-4 network considered in this research 
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Accordingly, all trips in the network can be grouped into 9 types according to the locations of 

the origin zone and the destination zone: 

 From internal zone to internal zone (I-I) 

 From internal zone to middle zone (I-M) 

 From internal zone to external zone (I-E) 

 From middle zone to internal zone (M-I) 

 From middle zone to middle zone (M-M) 

 From middle zone to external zone (M-E) 

 From external zone to internal zone (E-I) 

 From external zone to middle zone (E-M) 

 From external zone to external zone (E-E) 

Note that different trip types have different number of zones, thus the maximum number of 

trips in each trip type can be totally different (e.g., in this case study, the E-E trip has a 

maximum of 5280 trips, while the I-I trip only has 480 trips at most). Therefore, it may make 

no sense to compare the absolute number of different types of trips in the same scenario. 

Instead, we can cross compare the share of different trip types in the best and worst scenarios. 

For example, the share of the I-I trip is calculated as: 
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 ShareI-I = Number of I-I trips / total number of trips 

The share of different types of trips in the best scenario and worst scenario are illustrated in 

Fig. 7. Overall, the best scenarios always have relatively higher share of the I-I, I-M, and M-I 

trips than the worst scenarios, while the share of the E-M, E-E, M-E trips in the worst 

scenarios are comparatively higher. It indicates that the best demand patterns have more trips 

in the internal links than the worst demand patterns; on the other hand, the worst demand 

patterns have more trips generated and ended in the external links than the best demand 

patterns. 

Figure 8 Share of the different types of trips 
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4. Conclusions 

In this paper we present an efficient approach for generating traffic demand patterns for a grid 

network. This approach is developed based on the ideas from experiment design. It is 

expected to overcome the drawback from manually generating the demand pattern (e.g., 

incomplete enumerating of possible demand patterns), as well as the extremely high 

computational cost if using the approaches of exhaust search. 

We illustrate the application of this approach through a case study. It includes an abstract 4-

by-4 network with bidirectional links and 552 OD pairs. The proposed approach is used to 

generate the traffic demand patterns in terms of best and worst traffic performance. We 

evaluate the maximum flow at intersections and links, and the total travel time of the network. 

The findings show that the variations in the spatial distributions of the demand may cause big 

variations in the traffic performance. It further highlights the importance for the research of 

demand pattern generation, as the use of an incomplete set of demand patterns for the network 

design and evaluation may bring cascading effects, e.g., overestimating the capacity of the 

network if only the best demand pattern is used. 

Moreover, the demand pattern generation approach proposed in this study is a general 

approach, and it is not based on any specific traffic model or type of network. The traffic 

assignment models and presented in this paper are just used for demonstration purposes, and 

they are not necessarily required in other studies. In fact, the practitioners are free to choose 

their own models as well the performance indicators considering the affordable computation 

cost, although the core process for the demand pattern generation should remain the same. 

The future research could be devoted to introduce the variations of the magnitude and 

temporal distribution in the demand pattern generation, and further enhance the efficiency of 

the algorithm. 



14th Swiss Transport Research Conference                                                                                                 May 14-16, 2014 

 ______________________________________________________________________________________________  

17 

5. References 

Bar-Gera, H. (2010) Traffic assignment by paired alternative segments, Transportation 

Research Part B: Methodological, 44(8), 1022–1046. 

Bureau of Public Roads (1964) Traffic assignment manual, Washington DC: US Department of 

Commerce, Urban Planning Division. 

Dial, R. (2006) A path-based user-equilibrium traffic assignment algorithm that obviates path 

storage and enumeration, Transportation Research Part B: Methodological, 40 (10), 917–

936. 

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs, Numerische 

Mathematik, 1, pp. 269–271. 

Frank, M. and P. Wolfe (1956) An algorithm for quadratic programming,. Naval Research 

Logistics Quarterly, 3 (1–2), 95–110. 

Ge, Q. and M. Menendez (2014) An Efficient Sensitivity Analysis Approach for 

Computationally Expensive Microscopic Traffic Simulation Models, International Journal 

of Transportation (in press). 

LeBlanc, L., E. Morlok, and W. Pierskalla (1975) An efficient approach to solving the road 

network equilibrium traffic assignment problem, Transportation Research, 9(5), 309–318. 

Ortigosa, J. and M. Menendez (2014) Traffic performance on a quasi-grid urban structures, 

Cities, 36, 18-27. 

Roupec, J. and Popela, P. (2009) Genetic Algorithms for Scenario Generation in Stochastic 

Programming, Advances in Computational Algorithms and Data Analysis, pp. 527-536). 

Springer Netherlands. 

Scott, D., D. Novak, L. Aultman-Hall, and F. Guo (2006) Network robustness index: A new 

method for identifying critical links and evaluating the performance of transportation 

networks, Journal of Transport Geography, 14(3), 215–227. 

Wardrop, J. G. (1952) Some theoretical aspects of road traffic research, Proceedings – 

Institution of civil engineers – Part 2: Research and theory, 1, 325–378. 


