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Abstract 

Parking can have a significant impact on transportation systems. Besides the effects on travel 

demand, the regulation and usage of urban parking can also directly influence traffic 

performance. The availability of parking and the demand to park, at any given time, influence 

the trip completion rate, and correspondingly the traffic conditions in the area.  

In our research, we define several vehicle groups, according to their status concerning 

parking. For example, vehicles in an area can be grouped into “driving”, “searching” and 

“staying (i.e., parking)”. To find the quantity of cars within each vehicle group at a future 

time, we divide the time period into a number of thin time slices, in which the conditions are 

assumed to be static. Using probability theory, kinematic flow theory and dimensional 

analysis, a transition matrix can be developed. Based on that, the quantity of cars driving, 

parking or searching for parking can be updated over time. Therefore, the model enables us to 

define, simulate, and quantify the dynamics of the parking process. Furthermore, we are able 

to estimate different traffic parameters / indicators. The ultimate goal is to evaluate the 

relationship between urban parking and traffic performance in urban networks.  

The current study (this paper) is a preliminary part of the research, it quantifies the number of 

cars that access parking in a time slice analytically (i.e, the number of cars that leave the 

“searching” group, and join the “staying” group). Numerical examples are given, a program is 

provided to test the results as well.  

Keywords: Urban Parking – Transition Matrix – Traffic 

 

1. General information 

Given that this paper is the first part of an ongoing research, we will give a general 

introduction of the research (part 1.1), then we will introduce the basics of this paper (part 

1.2). 
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1.1 Background 

Parking can have a significant impact on the transportation system. Besides the long-term 

effects on travel demand, the regulation and usage of urban parking can also directly influence 

traffic performance. For example, in Thompson (1998), based on the review of 16 studies of 

mostly American and European cities, it was concluded that cars searching for free parking 

contribute to over 8% of the total traffic in a city, reaching 30% in business areas during rush 

hour. In Cao (2014), the potential delay caused by on-street parking maneuvers was modeled 

analytically; showing that when they take place near signalized intersections, the local 

network can be easily affected. In Montini (2012), GPS data collected in the city of Zurich, 

showed that a vehicle’s speed strongly decreases when approaching the parking space.  

In these studies, some “short-term” or “immediate” effects of urban parking on traffic 

performance are shown. However, to the authors’ knowledge, no study has provided yet a 

generalized methodology to macroscopically model the relation between parking demand, 

parking availability, and traffic conditions, considering such a temporal scope. 

In the research, we develop a parking-state-based transition matrix that aims to model 

macroscopically a dynamic urban parking system. Basic assumptions for the matrix include a 

traffic demand over a period of time (e.g., a day), and the distribution of parking durations. 

The model then provides a continuous approximation of the percentage/number of cars 

searching for parking, traveling through the system, and staying in parking stalls, as a function 

of time. These results are useful to estimate both, how traffic performance (e.g., speed, 

density, flow) affects drivers’ ability to find parking; and how parking availability affects 

traffic performance.  

Consider a round-trip going into an urban area as a tour (instead of 2 single trips). The whole 

tour (within the urban area of interest) can then be divided into four parking-related states 

separated by five parking-related events (see Figure 1). Notice that we assume the parking 

maneuvers (access / depart) are instantaneous although in reality they are not.  
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Figure 1. Parking-related states and parking-related events for a given vehicle. 

 
 

 

 
 
Figure 2 illustrates the cumulative number of vehicles that have experienced each parking 

event as a function of time. The vertical distance between the curves from two consecutive 

events, indicates the number of vehicles in the in-between parking state at any given time, 

e.g., the vertical distance at the beginning of time slice i between the curves “Decide” and 

“Access” indicates the number of vehicles searching for parking at that specific time. 

Similarly, the average horizontal distance between two consecutive curves indicates the 

average time spent in the in-between parking state. 

Figure 2. Cumulative number of vehicles that have experienced each parking event. 

 
 

 

Note that the dotted line in Figure 2, “enter” and “leave” indicate the cars which enter and 

leave the area. The number of vehicles going through these two events are obtained based on 

assumptions on travel demand (i.e., input to the model). For a time slice (e.g., one minute), 

each state of the system can be updated based on: 
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 ndecide: number of new vehicles that start searching for parking during the current time 

slice. 

 naccess: number of vehicles finding/accessing a parking stall during the current time slice. 

 ndepart: number of vehicles departing a parking stall during the current time slice. 

 Nsearching: number of vehicles searching for parking at the beginning of the current time 

slice. 

 Nstaying: number of vehicles staying in a parking stall at the beginning of the current time 

slice (i.e., parking stalls used). Since Nstaying + Nvacant represents the total number of 

available parking stalls, Nvacant can be easily found at the beginning of each time slice. 

In this paper, we are trying to provide an analytical estimation of naccess. 

1.2 Introduction 

In this paper, an analytical and also an experimental (program) estimation of naccess are 

provided. It is not only the number of cars accessing parking (finding parking) during a time 

slice, but also the number of parking spots being newly occupied during this period. For 

simplification purposes, we use   instead of naccess to represent this value.  

In the real world, the road network and distribution of parking facilities can be very detailed 

and different from one place to another. Therefore, in our model, we focus on the averaged 

values based on generalized conditions. In this way, the model is kept simple but yet valid 

enough to represent the basics of urban parking systems and the parking search process. Here 

we mention the basics of our assumptions for the model, details can be found in the next 

section. 

Imagine the network of interest as a ring road with cars traveling in a single direction. 

Vehicles entering the network appear uniformly distributed along the ring. The overall 

parking supply can be (or not) uniformly distributed along the ring; but in each time slice (i.e., 

in the time period of interest), the vacant parking stalls appear randomly on the road. Vehicles 

drive on the ring road searching for vacant parking stalls, and access the first one they see. 

These assumptions allow us to imitate a practical situation with the imbalance between 

parking availability and demand, as well as the parking search phenomenon. But, as 

mentioned before, the model neglects the influence of the network shape (by assuming all 

streets have the same likelihood of being visited), and personal requirements for parking.  
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2. Model 

2.1 Assumptions 

The urban network is abstracted as one ring road with cars driving in a single direction. Here 

are some basic assumptions: 

1. At the beginning of a time slice, new searching vehicles appear on the road uniformly, 

(this constraint can be relaxed in future extensions of this model) while the parking 

spots appear randomly (notice that the distribution of the parking spots follows a 

uniform distribution in a longer term).  

2. All vehicles drive at the same speed while looking for available parking.  

3. A parking spot might be visited by several vehicles, but it can only accommodate the 

first one that passes by. The others will see it occupied, then continue searching for the 

next available parking spot.  

Figure 3 shows two examples of the situation: (a) 4 cars are searching while only 2 parking 

spots are available; (b) 4 cars are searching while 5 parking spots are available. Evidently, the 

results depend on, the number of searchers and parking spots, and the distance a car can reach 

within a given time slice. 

Figure 3. Examples illustrating possible combinations of both the quantity and the location of 

parking searchers and the available parking spots. 

 
 

                             

(a)                                           (b) 

Through probability theory, the number of vehicles successfully accessing parking spots,  , 

can be found.  

2.2 Variables 

Here is a list of all variables that will be used in the model to estimate  . 

Table 1. A list of all variables with explanation 

  the average travel speed is  . 

  
the size of the network is   (the total length of the ring road). For example, the 

probability of a parking being generated within       is ∫
 

 
  

 

 
. 
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  at the beginning of the period, there are   cars searching for parking. 

  at the beginning of the period, a number of   parking spots are available. 

  the length of the time slice is  . 

  the spacing between each two cars is   
 

 
. 

  the maximum driving distance of each car is     . 

  

        ⌊
 

 
⌋      . A place on the network can be visited by a maximum of 

  cars. In other words, a parking spot can be visited by a maximum of   cars, 

but still, it may not be taken by any (happens if all the cars parked before 

reaching that given spot).  

   
the probability of any specific parking spot being taken when it is located within 

[0,  ].  

 ̅ the average probability of a parking spot being taken,  ̅      . 

Evidently,             . 

2.3 Results  

Denote  ̅ as the probability for a specific parking spot been taken by any car during the 

period, regardless of what happens to the other parking spots. As  ̅ applies to any parking 

spot,      ̅.  

A parking spot can be located within any of the spacing between two cars, e.g., [0,  ], [ , 2 ] 

…[(   )     , the probability of it being taken is the same no matter which range it is 

located. Denote    as this probability, we can see it as the chance of any specific parking spot 

being taken when it is located within [0,  ], then  ̅      .  

Therefore,         . The results can be drawn depending on three different scenarios, 

they are described below. 

Scenario 1:         

Under this scenario, a parking spot can be visited by a maximum number of  =1 car. 

Therefore, the probability of a parking spot being taken when it is located within [0,  ],   , is 

based on two conditions:  

Condition 1. the parking spot can be reached by the car. Assume the location of the parking 

spot as  , then this part is the probability of        , can be written as ∫
 

 

 

 
  . 
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Condition 2. within the rest     parking spots, all of them are further away than this one 

(located at  ) from the initial location of the car, so that the car will park at   as 

it is the first parking it sees. This probability can be written as (∫
 

 

 

 
  )

   

. 

Therefore,    ∫
 

 

 

 
(∫
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   and          {  [∫
 

 

 

 
(∫
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  ]} , a 

simplified equation can be seen in Eq. 1(a).  

Scenario 2:   (   ).  

Under this condition, the probability of the parking spot to be taken,   , can be summarized by 

two separate parts:  

   : the probability of the parking spot to be taken by the car if it is located within      (   )  . 

In this scenario, a maximum number of   cars can reach the parking spot (assume they did not 

park before then).  

 If    , the number of the rest of the parking spots (i.e.,    ) can accommodate at 

most     cars. In other words, at least one car still did not park before it arrives at 

location  . Therefore, the probability of the parking spot (at location  ) is  

   ∫
 

 
  

  (   ) 

 
 . 

 If    , there are more parking spot available on the network than cars, then the 

probability of the parking spots being taken equals to one minus “the chance that all the 

cars parked before they arrived at location  ”. Therefore, the probability of the parking 

spot (at location  ) being taken is 
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   : the probability of the parking spot to be taken by the car if it is located within    (   )    . 

In this scenario, a maximum number of     cars can reach the parking spot (assume they did not 

park before then).  

 If    , there are more parking spots available on the network than cars, then the 

probability of the parking spot being taken equals to one minus “the chance that all the cars 

parked before they arrived at location  ”. Therefore, the probability of the parking spot (at 

location  ) being taken is 

   ∫
 

 
  

 

  (   ) 
 . 

 If    , it is possible that all the     cars parked before they arrive at location  , and 

one minus this chance is, then, the probability of the parking spot at   being taken. 

Therefore, the probability of the parking spot (at location  ) being taken is 
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, a 

simplified equation can be seen in Eq. 1(b). 

Scenario 3:       ).  

When       ), each car can drive virtually around the whole network at least once, and the 

result is             The equation can be seen in Eq. 1(c). 

Simplified Equations/Results 

The results according to the three scenarios are summarized as below. The equations are 

simplified, therefore it might be harder to understand, but they are meant to be used/ 

calculated more easily. 
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Scenario 1: when         
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Eq 2(c) 

Scenario 2: when       ) 

            Eq 3 
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2.4 Numerical Examples 

Scenario 1:        . 

Assume the length of the ring road is  =1km; a number of  =4 parking spots are available; a 

number of  =3 cars are searching for parking spots, the spacing between two cars is  =1/3 

km; each car can drive a maximum distance of  =1/5 km. Then 

    {  [∫
 

 

   

 
  (∫

 

 

 

 
)
 
]}      . During the period, an average value of 1.77 cars out of 3 

find parking, 1.77 parking spots out of 4 are newly occupied. 

Scenario 2:   (   ).  

Assume the same values as before (i.e.,  =1km;  =4;  =3;  =1/3km) but a different value of 

 =5/6 km,      . In this case, within each spacing of distance  , the parking spot 

located within      (   )     can be reached by  =3 cars virtually, the parking spot 

located within    (   )       can be reached by  -1=2 cars virtually.    and    are 

analyzed below. 

Figure 4. Examples supporting the illustration of    and   . 

 
 

  

(a) if   [  
 

 
], a number of  =3 cars can reach  . (b) if   [

 

 
 
 

 
], a number of  -1=2 cars can reach  . 

   represents the probability of the parking spot (which locates at   [  
 

 
]) being taken, 

given that  =3 cars can actually pass by the location, they start at location  
 

 
 ,  

 

 
 and 0 

respectively. It can be seen in the equation below: 

 Condition 1 represents the probability that, within the rest of the     available parking spots, 

a number of            spots exist between  
 

 
 and  . Therefore, the car that started from 

 
 

 
 can be accommodated before it reaches  ;  

 Condition 2 represents the probability that, within these    parking spots mentioned in 

condition 1, a number of           spots are actually located between  
 

 
 and  . Therefore, 

the car that started from  
 

 
 can be accommodated before it reaches  ; 
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 Condition 3 represents the probability that, within these    parking spots mentioned in 

condition 2, a number of           spots are actually located between   and  . Therefore, the 

car that started from 0 can be accommodated before it reaches  . 
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  Eq 6 

Therefore, all three cars that possibly can reach location   are accommodated before then, and 

the parking spot at   won’t be taken. Correspondingly, one minus this probability is the 

chance that the parking spot is taken. 

   represents the probability of the parking spot (which is located at   [
 

 
 
 

 
]) being taken, 

given that only 2 (i.e., ⌊
 

 
⌋) cars can actually passed by the location, one of them started 

driving at location of  
 

 
 and the other starts at location  . 

It can be seen in the equation below: 

 Condition 1 represents the probability that, within the rest of the     available parking spots, 

a number of            spots exist between  
 

 
 and  . Therefore, the car that started from 

 
 

 
 can be accommodated before it reaches  ;  

 Condition 2 represents the probability that, within these    parking spots, a number of 

          spots are actually located between 0 and  . Therefore, the car that started from 0 

can be accommodated before it reaches  . 

Therefore, both cars that possibly can reach to location   are accommodated before then, and 

the parking spot at   won’t be taken. Correspondingly, one minus this probability is the 

chance that the parking spot is taken. 
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  Eq 7 

Therefore,       (     )     . During the period, an average value of 2.9 cars out of 

3 find parking, 2.9 parking spots out of 4 are newly occupied.  

Scenario 3:       ).  
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Assume the same values as before (i.e.,  =1km;  =4;  =3;  =1/3km) but a different value of 

 =2km. Then             . During the period, all 3 cars find parking, 3 parking spots 

out of 4 are newly occupied. 

3. Validation 

Our analytical model, although restricted in many aspects, provides us a basic approach to 

describe the “process and success” of searching for parking. For the validation part, it is 

currently impossible to validate the equations with real data, but a matlab program is provided 

to run experiments with random inputs. The code for both the model and the experiment can 

be seen in the appendix. We used the results obtained in the experiments to validate the model 

(Eq. 1-3). In the experiment, each set of input can be ran for 1000 times (or more) to obtain 

the averaged value in order to be compared with the analytical results. 

4. Summary 

This paper was the starting of the development of the parking-state-based transition matrix, 

which aims to model macroscopically a dynamic urban parking system. The model and 

equations are drawn based on quite restrictive conditions, nevertheless, the results do can 

represent a real life parking searching system. Besides, the results have been tested/ validated 

by programmed experiments. The next step would be to model the departures from the 

parking facilities, then the matrix can be built. 
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Appendix 

1. Analytical model 

function model(A,L,N,d) 
A=4; 
L=1; 
N=3; 
d=5/6; 

  
s=L/N; 
m=min(N,floor(d/s)+1); 
%% 
if d<=s 
    display 'Scenario 1: d<=s' 
    naccess=N*(1-(1-d/L).^A) 
end 
%% 
if and(d>s,d<L) 
    display 'Scenario 2: s<d<L' 
    %% 
    if A<m 
        display 'Scenario 2(1): s<d<L and A<m' 
        naccess=A 
    end 
    %% 
    if A==m 
        display 'Scenario 2(2): s<d<L and A=m' 
        sumcorefirstpart=0; 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        matrixsecondpart(1,1)=A-1; 
        for j=2:m 
            matrixsecondpart(1,j)=m-j+1; 
        end 
        matrixsecondpart; 
        i=1; 
        while matrixsecondpart(i,1)~=matrixsecondpart(i,m) 
            matrixsecondpartnewline=matrixsecondpart(i,:); 
            j=m; 
            while matrixsecondpart(i,:)==matrixsecondpartnewline(1,:) 
                if matrixsecondpart(i,j)~=matrixsecondpart(i,j-1) 
                    

matrixsecondpartnewline(1,j)=matrixsecondpartnewline(1,j)+1; 
                    if j<m 
                        for k=j+1:m 
                            

matrixsecondpartnewline(1,k)=matrixsecondpart(1,k); 
                        end 
                    end 
                    matrixsecondpart(i+1,:)=matrixsecondpartnewline; 
                else 
                    j=j-1; 
                end 
            end 
            i=i+1; 
        end 
        matrixsecondpart 
        [k l]=size(matrixsecondpart) 
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        combinationsecond(1:k,1)=1; 
        for i=1:1:k 
            for j=1:1:l-1 
                c=nchoosek(matrixsecondpart(i,j),matrixsecondpart(i,j+1)); 
                combinationsecond(i,1)=combinationsecond(i,1)*c; 
            end 
        end 
        combinationsecond 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        coresecondpart(1:k,1)=1; 
        for i=1:1:k 
            fun = @(x) (((N-m+2).*s-x).^(A-1-

matrixsecondpart(i,2)).*(x.^(matrixsecondpart(i,m)))); 
            

coresecondpart(i,1)=combinationsecond(i,1).*s.^(matrixsecondpart(i,2)-

matrixsecondpart(i,m)).*integral(fun,(d-(m-1)*s),s); 
        end 
        coresecondpart 
        sumcoresecondpart=sum(coresecondpart(1:k)) 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        core=sumcorefirstpart+sumcoresecondpart 
        naccess=A*(1-N/(L.^A)*core) 
    end 
    %% 
    if A>m 
        display 'Scenario 2(3): s<d<L and A>m' 
        matrixfirstpart(1,1)=A-1; 
        for j=2:m+1 
            matrixfirstpart(1,j)=m-j+2; 
        end 
        matrixfirstpart; 
        i=1; 
        while matrixfirstpart(i,1)~=matrixfirstpart(i,m+1) 
            matrixfirstpartnewline=matrixfirstpart(i,:); 
            j=m+1; 
            while matrixfirstpart(i,:)==matrixfirstpartnewline(1,:) 
                if matrixfirstpart(i,j)~=matrixfirstpart(i,j-1) 
                    

matrixfirstpartnewline(1,j)=matrixfirstpartnewline(1,j)+1; 
                    if j<m+1 
                        for k=j+1:m+1 
                            

matrixfirstpartnewline(1,k)=matrixfirstpart(1,k); 
                        end 
                    end 
                    matrixfirstpart(i+1,:)=matrixfirstpartnewline; 
                else 
                    j=j-1; 
                end 
            end 
            i=i+1; 
        end 
        matrixfirstpart 
        [k l]=size(matrixfirstpart) 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        combinationfirst(1:k,1)=1; 
        for i=1:1:k 
            for j=1:1:l-1 
                c=nchoosek(matrixfirstpart(i,j),matrixfirstpart(i,j+1)); 
                combinationfirst(i,1)=combinationfirst(i,1)*c; 
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            end 
        end 
        combinationfirst 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        corefirstpart(1:k,1)=1; 
        for i=1:1:k 
            fun = @(x) (((N-m+1).*s-x).^(A-1-

matrixfirstpart(i,2)).*(x.^(matrixfirstpart(i,m+1)))); 
            

corefirstpart(i,1)=combinationfirst(i,1).*s.^(matrixfirstpart(i,2)-

matrixfirstpart(i,m+1)).*integral(fun,0,(d-(m-1)*s)) 
        end 
        corefirstpart 
        sumcorefirstpart=sum(corefirstpart(1:k)) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        matrixsecondpart(1,1)=A-1; 
        for j=2:m 
            matrixsecondpart(1,j)=m-j+1; 
        end 
        matrixsecondpart; 
        i=1; 
        while matrixsecondpart(i,1)~=matrixsecondpart(i,m) 
            matrixsecondpartnewline=matrixsecondpart(i,:); 
            j=m; 
            while matrixsecondpart(i,:)==matrixsecondpartnewline(1,:) 
                if matrixsecondpart(i,j)~=matrixsecondpart(i,j-1) 
                    

matrixsecondpartnewline(1,j)=matrixsecondpartnewline(1,j)+1; 
                    if j<m 
                        for k=j+1:m 
                            

matrixsecondpartnewline(1,k)=matrixsecondpart(1,k); 
                        end 
                    end 
                    matrixsecondpart(i+1,:)=matrixsecondpartnewline; 
                else 
                    j=j-1; 
                end 
            end 
            i=i+1; 
        end 
        matrixsecondpart 
        [k l]=size(matrixsecondpart) 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        combinationsecond(1:k,1)=1; 
        for i=1:1:k 
            for j=1:1:l-1 
                c=nchoosek(matrixsecondpart(i,j),matrixsecondpart(i,j+1)); 
                combinationsecond(i,1)=combinationsecond(i,1)*c; 
            end 
        end 
        combinationsecond 
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
        coresecondpart(1:k,1)=1; 

         
        for i=1:1:k 
            fun = @(x) (((N-m+2).*s-x).^(A-1-

matrixsecondpart(i,2)).*(x.^(matrixsecondpart(i,m)))); 
            

coresecondpart(i,1)=combinationsecond(i,1).*s.^(matrixsecondpart(i,2)-

matrixsecondpart(i,m)).*integral(fun,(d-(m-1)*s),s); 
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        end 
        coresecondpart 
        sumcorefirstpart 
        sumcoresecondpart=sum(coresecondpart(1:k)) 
%%         

        core=sumcorefirstpart+sumcoresecondpart 
        naccess=A*(1-N/(L.^A)*core) 
    end 
end  
%% 

  
if d>=L 
    display 'Scenario 3: d>=L' 
    naccess=min(A,N) 
end 

2. Experiments 

function experimentrepeat(A,N,L,V,T) 
A=4; 
N=3; 
L=1; 
V=30; 
T=5/6/30; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
repeattimes=10000; 
final(repeattimes,1)=5555555555; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
if A<N 
    X=A; 
else 
    X=N; 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
for z=1:repeattimes 
    repeattimes%display 
    %below is to generate the location of parking spots starting location 

of the cars 
    parklocation=rand(A,1)*L%display 
    for j=1:N 
        carlocation(1,j)=(j-1)*L/N; 
    end 
    carlocation%display 
    %below is to locate the parking spots regards to the car locations, 
    %e.g.,this parking spot is located between car 2 and car 3. This helps 

to 
    %measure the driven distance needed for each car to each parking spot. 
    for i=1:A 
        parklocation(i,2)=ceil(parklocation(i,1)/L*N); 
        parklocation(i,3)=parklocation(i,2)+1; 
    end 
    parklocation%display the location of the parking spot with comparison 

to the car's locations 
    

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
    %below is to find distance/driving time needed for each car to reach 

any of the parking 
    %spot. 
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    for i=1:A 
        for j=1:N 
            if parklocation(i,3)==N+1 
                dneeded(i,j)=parklocation(i,1)-carlocation(j); 
            elseif parklocation(i,3)>j 
                dneeded(i,j)=parklocation(i,1)-carlocation(j); 
            else 
                dneeded(i,j)=parklocation(i,1)-carlocation(j)+L; 
            end 
        end 
    end 
    dneeded%display 
    %above is the distance for each car to reach the parking spots, number 

in row i column j, means, the driven distance needed by car j to arrive at 

parking spot i. 
    %below is to find the minimum distance for any car to reach any parking 

spot. 
    dmin(1:X,1)=L; 
    dmin(1:X,2:3)=0; 
    for x=1:X 
        for i=1:A 
            for j=1:N 
                if dneeded(i,j)<dmin(x,1) 
                    dmin(x,1)=dneeded(i,j); 
                    dmin(x,2)=i; 
                    dmin(x,3)=j; 
                end 
            end 
        end 
        dneeded(dmin(x,2),:)=L; 
        dneeded(:,dmin(x,3))=L; 
    end 
    dmin%display 
    %dmin is the driven distance needed by the first cars that are reaching 

the parking spots. 
    tmin=dmin; 
    tmin(:,1)=dmin(1:X,1)/V; 
    tmin%display 
    %tmin is the driven time needed by the first cars that are reaching the 

parking spots. 
    if T<tmin(1,1) 
        nreal=0; 
    elseif T>tmin(X,1) 
        nreal=X; 
    else 
        for j=1:X-1 
            if T>tmin(j,1)& T<tmin(j+1,1) 
                nreal=j; 
            end 
        end 
    end 
    nreal; 
    final(z,1)=nreal; 
end 

  
final 
averagefinal=0; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
for z=1:repeattimes 
    averagefinal=averagefinal+final(z,1); 
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end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% 
averagefinal=averagefinal/repeattimes 
end 

  

 

 


