

NEW DIRECTIONS IN OPTIMIZING HAZARDOUS MATERIALS TRANSPORTATION DECISIONS

BY

PROFESSOR KONSTANTINOS G. ZOGRAFOS

TRANSPORTATION SYSTEMS AND LOGISTICS LABORATORY (TRANSLOG) DEPARTMENT OF MANAGEMENT SCIENCE AND TECHNOLOGY ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS <u>kostas.zografos@aueb.gr</u>

12th SWISS TRANSPORT RESEARCH CONFERENCE (STRC) MONTE VERITA, ASCONA (TICINO), MAY 2-4, 2012

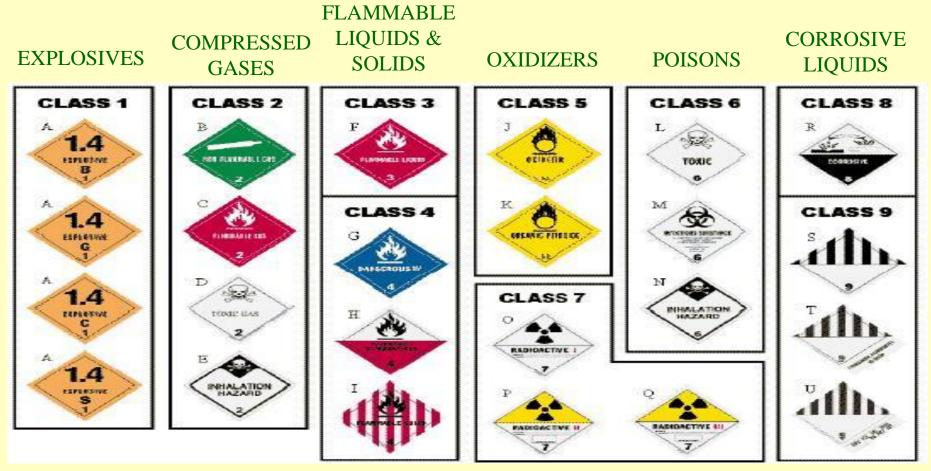
TABLE OF CONTENTS

- > INTRODUCTION
- ➢ PRESENTATION OBJECTIVES
- OVERVIEW OF HAZARDOUS MATERIALS TRANSPORTATION AND DISTRIBUTION MODELS
- ➢ PROBLEM DEFINITION
- ➤ TRAVEL TIME MODEL
- ➤ TRANSPORTATION RISK
- ➤ MATHEMATICAL FORMULATION
- ➢ SOLUTION ALGORITHM
- COMPUTATIONAL PERFORMANCE
- CONCLUDING REMARKS
- ➢ FUTURE RESEARCH DIRECTIONS

INTRODUCTION (1/6)

➢ HAZARDOUS MATERIALS DEFINITION

"HAZARDOUS MATERIAL: A SUBSTANCE OR MATERIAL [...] BEING CAPABLE OF POSING AN **UNREASONABLE RISK** TO **HEALTH, SAFETY**, OR **PROPERTY** WHEN **TRANSPORTED** IN COMMERCE [...]"


➢ HAZARDOUS MATERIALS TRANSPORTATION IS AN ACTIVITY OF SIGNIFICANT ECONOMIC IMPORTANCE (2.23 x 10⁹ TONS OR 18% OF TOTAL GOODS TRANSPORTED)

➢ HIGH RISK IS ASSOCIATED WITH THEIR ACCIDENTAL RELEASE WHILE TRANSPORTED

- U.S. Code of Federal Regulations, 49CFR ("Transportation"), 105

INTRODUCTION (2/6)

RADIOACTIVE MATERIALS MISCELLANEOUS

- U.S. Code of Federal Regulations, 49CFR ("Transportation"), 105

INTRODUCTION (3/6)

- **Date**: May 24, 2004
- Location: 50 km northeast of Bucharest, Romania
- Type of Accident: truck overturn, explosion
- Material: more than 22t of "nitrous fertilizers"
- Consequences: 20 killed (including 7 military firefighters, 2 journalists,
- 3 local people watching the fire, and 5 people who stopped their cars to watch the fire)

Mainiero, R.J., J.H. Rowland III, "A Review of Recent Accidents Involving Explosives Transport", <u>Journal of Explosives Engineering</u>, 26(2), pp.6-12, 2009.

INTRODUCTION (4/6)

- **Date**: April 22, 2004
- Location: Ryongchon, North Korea
- **Type of Accident**: two train wagons came into contact during shunting operations at the city railway station, massive explosion
- Material: each wagon containing 44t of AN (ammonium nitrate)
- Consequences: 54 killed, appr. 1,300 injured, town severely damaged (leveling everything in a 500-m radius)

Mainiero, R.J., J.H. Rowland III, "A Review of Recent Accidents Involving Explosives Transport", Journal of Explosives Engineering, 26(2), pp.6-12, 2009.

http://www.internet-law-firm.com/articles/Train%20derailment%20in%20Baltimore/Train%20derailment%20reveals%20fragile%20Net.htm http://gmfranci.wordpress.com/category/railroads-2/

INTRODUCTION (5/6)

➢ RISK = ACCIDENT PROBABILITY x CONSEQUENCE

> TRUCK ROUTING IS CONSIDERED A MAJOR PROACTIVE RISK MITIGATION MEASURE

- REDUCE ACCIDENT PROBABILITY
- REDUCE ACCIDENT CONSEQUENCE

INTRODUCTION (6/6)

CONSIDERABLE RESEARCH EFFORT

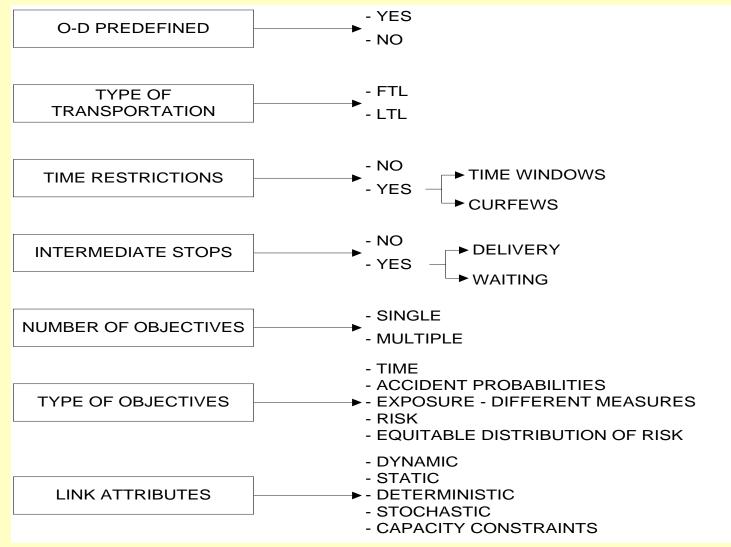
 8 special issues of journals [Transportation Science (2 issues), Journal of Transportation Engineering, INFOR (double-issue), Location Science, Studies in Locational Analysis, Computers & Operations Research, International Journal of Heavy Vehicle Systems], ¹

 1 Chapter (by E. Erkut, S.A. Tjandra, and V. Verter) in the "<u>Handbook in OR &</u> <u>MS</u>", edited by C. Barnhart and G. Laporte, Vol. 14, Elsevier, 2007.¹

- **7** books. ¹
- Appr. 10 journal papers per annum on average.

> NOT ALL REAL WORLD ASPECTS OF THE PROBLEM HAVE BEEN INCORPORATED IN EXISTING MODELS

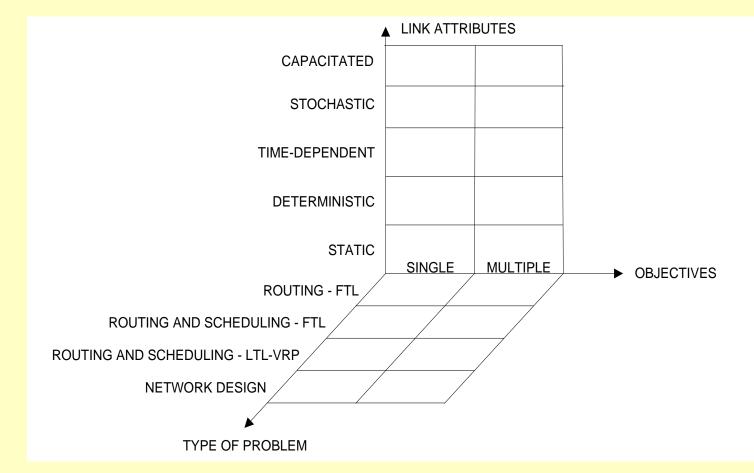
¹Erkut, E., S.A. Tjandra, and V. Verter, "Hazardous Materials Transportation", Chapter in "<u>Handbook in OR & MS</u>", Edited by C. Barnhart and G. Laporte, Vol. 14, 2007.



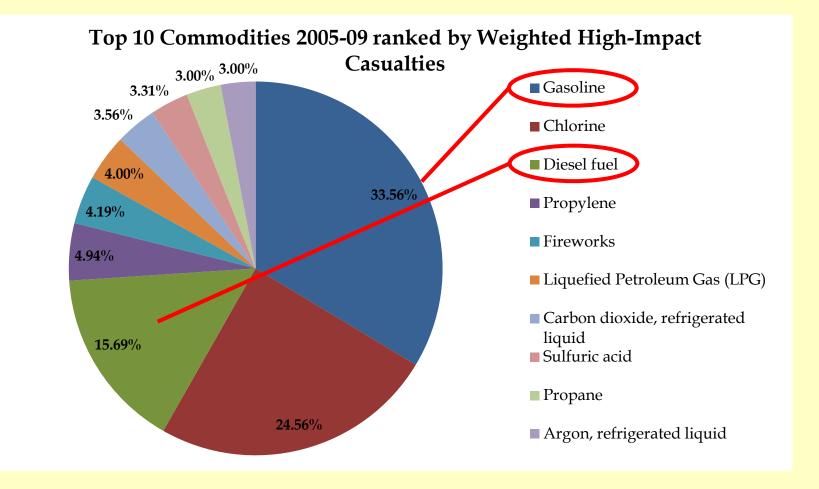
PRESENTATION OBJECTIVES

- TO PRESENT THE EVOLUTION AND CHARACTERISTICS OF HAZARDOUS MATERIALS TRANSPORTATION AND DISTRIBUTION MODELS
- TO FORMULATE AND SOLVE A NEW MODEL FOR HAZARDOUS MATERIALS DISTRIBUTION
- > TO PROVIDE RECOMMENDATIONS FOR FUTURE RESEARCH

CLASSIFICATION AND EVOLUTION OF HAZMAT MODELS (1/3)


CLASSIFICATION AND EVOLUTION OF HAZMAT MODELS (2/3)

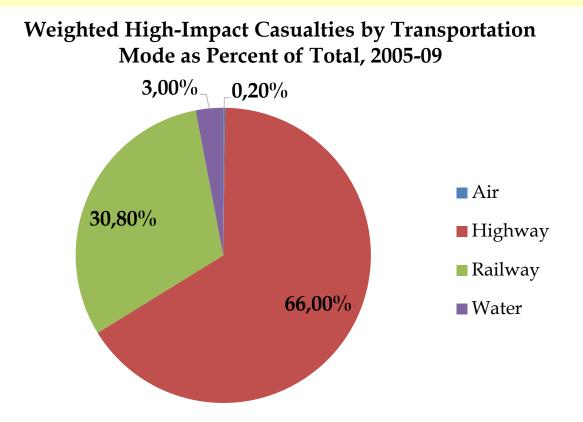
- MAJOR CATEGORIES OF PROBLEMS
- ► LOCATION ROUTING
- ≻ ROUTING FTL
- ➢ ROUTING AND SCHEDULING FTL
- ➢ ROUTING AND SCHEDULING LTL-VRP
- ➢ NETWORK DESIGN



CLASSIFICATION AND EVOLUTION OF HAZMAT MODELS (3/3)

MAJOR CATEGORIES OF PROBLEMS

PROBLEM DEFINITION (1/5)

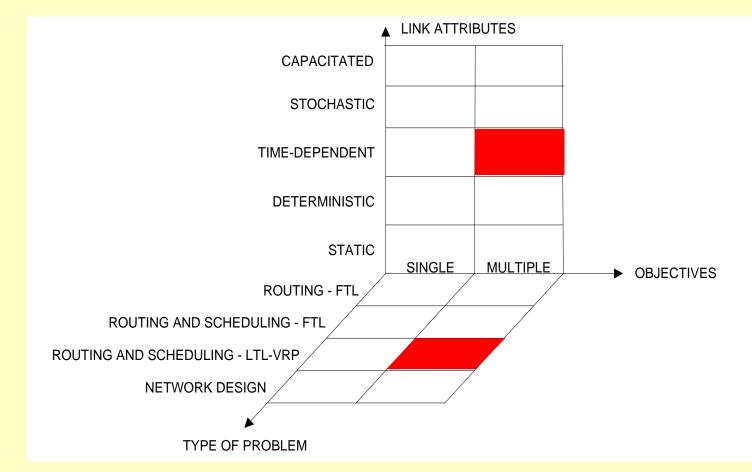

- U.S. Department of Transportation, 2011

PROBLEM DEFINITION (2/5)

A HIGH PERCENTAGE OF THESE COMMODITIES ARE DISTRIBUTED BY TRUCK DISTRIBUTION OF SUCH COMMODITIES IS BASED ON LTTL

➤ URBAN ENVIRONMENT

- U.S. Department of Transportation, 2011

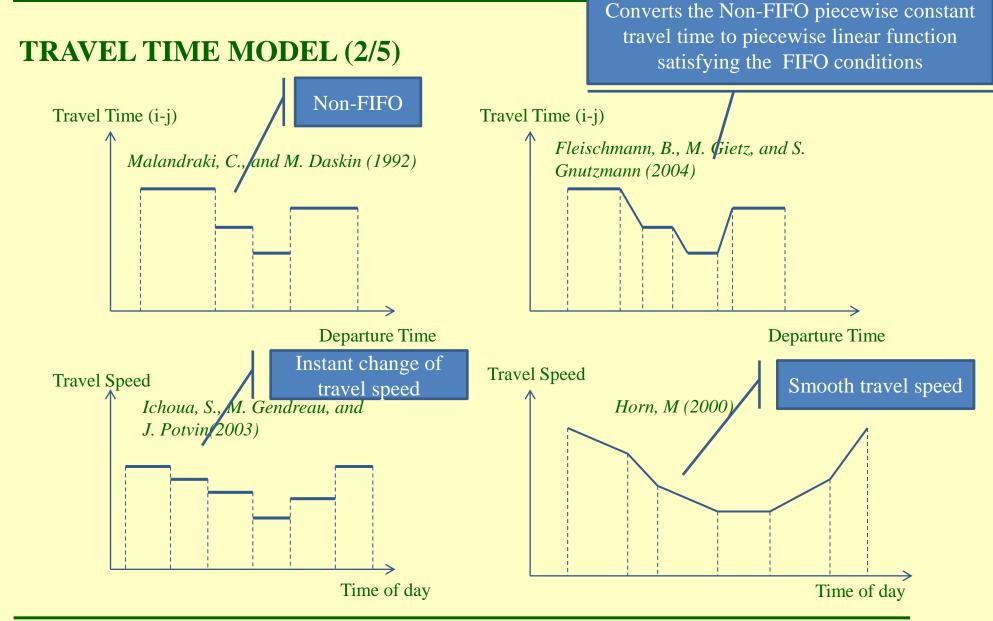

PROBLEM DEFINITION (3/5)

- > **CRITERIA**: TRAVEL TIME AND TRANSPORTATION RISK
- LINK PROPERTIES: ROADWAY NETWORK WITH TIME-DEPENDENT TRAVEL TIME AND RISK
- > **DEMAND**: KNOWN IN ADVANCE
- > **FLEET COMPOSITION**: NON-HOMOGENEOUS
- GOAL: IDENTIFY EFFICIENT ROUTES (TRAVEL TIME, RISK) FOR SERVICING A SET OF SPECIFIED ORDERS OF HAZARDOUS MATERIALS
- SERVICE CONSTRAINTS: TIME WINDOWS FOR CUSTOMERS AND DEPOT

PROBLEM DEFINITION (4/5)

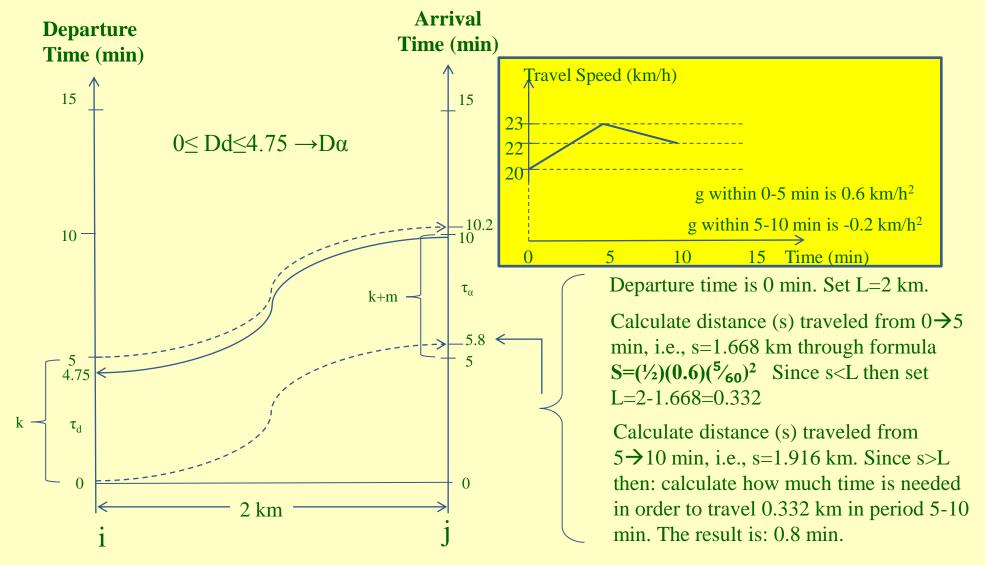
MAJOR CATEGORIES OF PROBLEMS

PROBLEM DEFINITION (5/5)


- > BI-OBJECTIVE TIME DEPENDENT
- > LOAD DEPENDENT RISK

TRAVEL TIME MODEL (1/5)

- > CENTRAL ISSUE TRAVEL TIME MODELING:
 - ACCURACY, WHICH AFFECTS THE FEASIBILITY AND OPTIMALITY OF THE ROUTES
 - COMPUTATIONALLY EFFICIENT CALCULATION



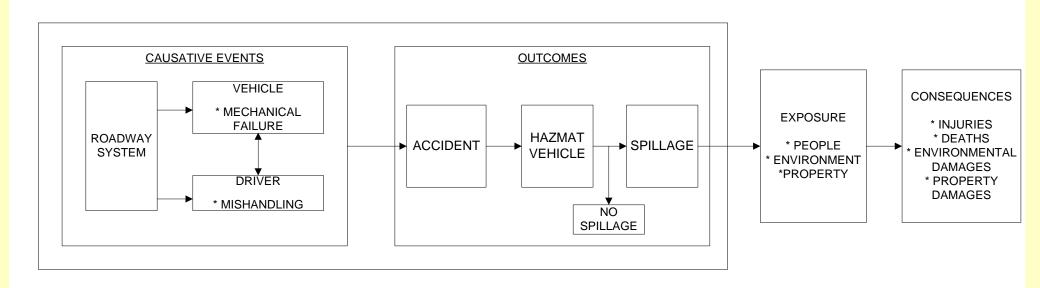
TRAVEL TIME MODEL (3/5)

- > THE TRAVEL TIME MODEL (WITH TRAVEL SPEED EXPRESSED THROUGH A PIECEWISE LINEAR FUNCTION OF THE TIME OF THE DAY) IS SELECTED:
 - IT IS MORE ACCURATE SINCE IT TAKES INTO ACCOUNT TRAVEL SPEED VARIATIONS.
 - THE ESTIMATION OF TRAVEL TIME IS MORE COMPUTATIONALLY INTENSIVE.
- A NEW EFFICIENT COMPUTATIONAL PROCEDURE IS PROPOSED.

TRAVEL TIME MODEL (4/5)

TRAVEL TIME MODEL (5/5)

KNOWING THE ARRIVAL TIME FOR A SINGLE DEPARTURE TIME (τ_d) , A CLOSED FORM SOLUTION HAS BEEN DERIVED THAT CAN ESTIMATE ARRIVAL TIME (τ_a) AT NEXT NODE FOR ANY OTHER DEPARTURE TIME


 $g_{ij}(\tau_{k+m}) \neq 0$ $A(\tau_d + \Delta d) = \tau_a + \left(\frac{1}{g_{ij}^{k+m}}\right) \left\{ -\left[g_{ij}^{k+m}[\tau_a - \tau_{k+m}] + v_{ij}^{k+m}\right] + \left\{ \left\{g_{ij}^{k+m}[\tau_a - \tau_{k+m}] + v_{ij}^{k+m}\right\}^2 + 2g_{ij}^{k+m}\left\{\frac{1}{2}g_{ij}^k \Delta d^2 + \left\{g_{ij}^k[\tau_d - \tau_k] + v_{ij}^k\right\} \Delta d \right\} \right\}^{1/2} \right\}$

$$g_{ij}\left(\tau_{k+m}\right)=0$$

$$A(\tau_d + \Delta d) = \tau_a + \frac{1}{v_{ij} (\tau_{k+m})} \Big\{ \frac{1}{2} g_{ij} (\tau_k) \Delta d^2 + \Big\{ g_{ij} (\tau_k) [\tau_d - \tau_k] + v_{ij} (\tau_k) \Big\} \Delta d \Big\}$$

TRANSPORTATION RISK (1/5)

- Zografos and Davis (1989)

12th Swiss Transport Research Conference (STRC), May 2-4, 2012

TRANSPORTATION RISK (2/5)

- PROBABILITY OF A HAZARDOUS MATERIALS ACCIDENT IS AFFECTED BY TRAFFIC FLOW INTENSITY, PREVAILING METEOROLOGICAL CONDITIONS AND ROADWAY NETWORK CHARACTERISTICS
- > THE CONSEQUENCES OF AN ACCIDENT ARE ESTIMATED BASED ON:
 - THE AREA OF IMPACT: IT DEPENDS ON THE PREVAILING
 METEOROLOGICAL CONDITIONS AND THE INTENSITY OF THE ACCIDENT (EXPLOSION, FIRE, OR CONTAMINATION)
 - THE **POPULATION DENSITY** OF THE AREAS EXPOSED TO TRANSPORTATION RISK WHICH ALSO VARIES DURING DIFFERENT PARTS OF THE DAY

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS TRANSPORTATION SYSTEMS AND LOGISTICS LABORATORY (TRANSLOG)

TRANSPORTATION RISK (3/5)

http://www.truckaccidents360.com/ http://www.internet-law-firm.com/articles/Train%20derailment%20in%20Baltimore/Train%20derailment%20reveals%20fragile%20Net.htm

TRANSPORTATION RISK (4/5)

- THE INTENSITY OF THE ACCIDENT DEPENDS (AMONG OTHERS) ON THE QUANTITY TRANSPORTED AT THE TIME OF THE ACCIDENT.
- THE SEQUENCE OF THE STOPS AFFECTS THE TOTAL TRANSPORTATION RISK
- > TIME-DEPENDENT
- > FIFO ASSUMPTION DOES NOT HOLD

TRANSPORTATION RISK (5/5)

➢ HAZMAT ACCIDENT PROBABILITY MODEL

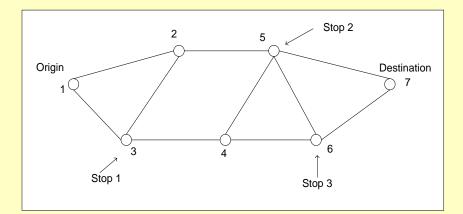
Probability of a truck accident.

$$\pi_{ij} \coloneqq P[A_{ij}]P[R_m|A_{ij}]P[I_m|R_m]$$

Probability of incident (e.g., fire, explosion) given a release.

Probability of release given a truck accident.

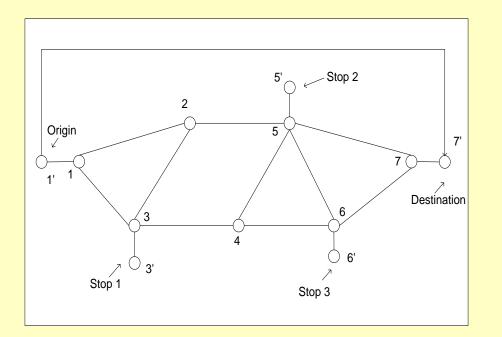
> TRANSPORTATION RISK ON ANY ARC (i-j)


 $R_{ij}^{\tau}(q) = \pi_{ij}^{\tau} Pop_{ij}^{\tau}(q) \quad \tau \in T, q \in [m_k, m_{k+1}]$

q: THE QUANTITY TRANSPORTED THROUGH LINK (i,j)

MATHEMATICAL FORMULATION (1/6)

ANY ROUTE IS EXPRESSED AS A SCHEDULED PATH (ROUTE-PATH) WHICH CONNECTS AN ORIGIN WITH A DESTINATION (DEPOT) AND PASSES THROUGH A SERIES OF STOPS



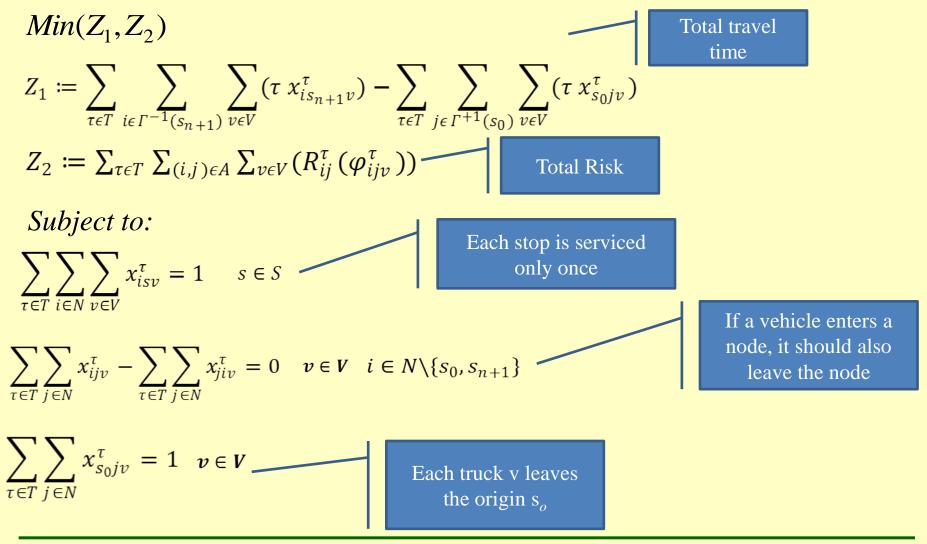
MORE THAN ONE ROUTE PATH MAY PASS FROM ANY NODE HOSTING A CUSTOMER

MATHEMATICAL FORMULATION (2/6)

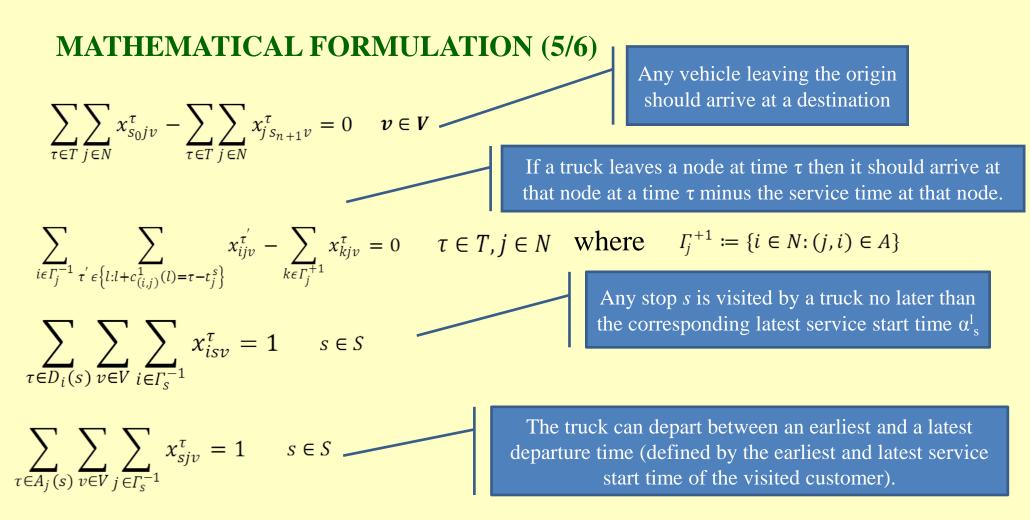
A DUMMY NODE IS CREATED AND LINKED TO THE ORIGINAL NETWORK FOR EVERY NODE THAT HOSTS A STOP

► THE CUSTOMER IS ASSUMED TO BE HOSTED IN THE DUMMY NODE

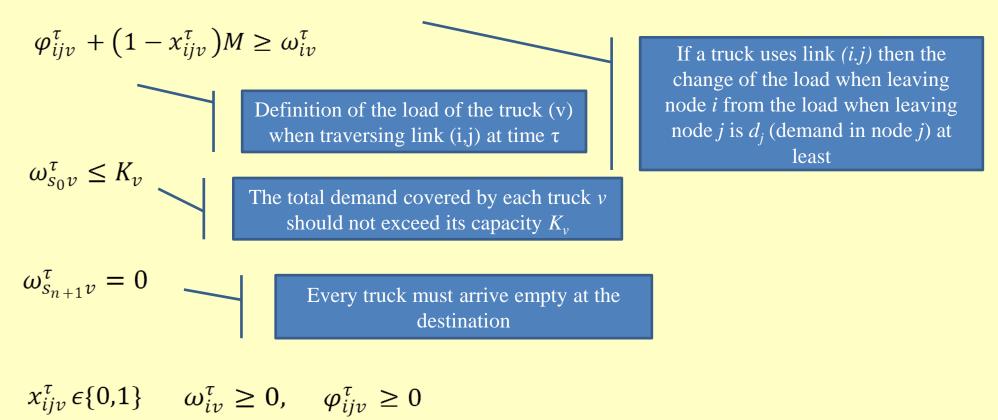
MATHEMATICAL FORMULATION (3/6)


- *S* SET OF STOPS (CUSTOMERS)
- *N* SET OF NODES OF THE NETWORK
- *A* SET OF ARCS OF THE NETWORK
- d_i DEMAND AT NODE j
- $x_{ijv}^{\tau} \in \{0,1\}$ IT TAKES VALUE 1 IF VEHICLE V ENTERS LINK (i,j) AT TIME τ
- $t^{s}(s_{k})$ SERVICE TIME FOR STOP s_{k}
- $[a_{s_k}^e, a_{s_k}^l]$ SERVICE TIME WINDOW FOR STOP s_k

 $\Gamma^{-1}(s) \coloneqq \{i \in N : (i,s) \in A\} \qquad D_i(s_k) \coloneqq \{\tau \colon \alpha_{s_k}^e \le \tau + c_{(i,s_k)}^1(\tau) \le \alpha_{s_k}^l\}$


 $\Gamma^{+1}(s) \coloneqq \{i \in N : (s,i) \in A\} \qquad A_j(s_k) \coloneqq \{\tau : \tau - t_{s_k}^s \le \alpha_{s_k}^l\}$

MATHEMATICAL FORMULATION (4/6)



MATHEMATICAL FORMULATION (6/6)

 $\omega_{iv}^{\tau} - \omega_{jv}^{\tau'} + (1 - x_{ijv}^{\tau})M \ge d_j \quad (i, j) \in A , i \neq s_n, v \in V, \ \tau' = \tau + c_{(i, j)}^1(\tau) + t_j^s$

SOLUTION ALGORITHM (1/9)

- THE PROBLEM UNDER STUDY CAN BE EXPRESSED BY A BI-CRITERION TIME DEPENDENT VEHICLE ROUTING PROBLEM WITH TIME WINDOWS
- THE WEIGHTING METHOD IS APPLIED WHICH LEADS TO A SERIES OF SINGLE OBJECTIVE (TIME-DEPENDENT) VRP WITH TIME WINDOWS AIMING TO OPTIMIZE THE WEIGHTED SUM OF TRAVEL TIME AND RISK $C(P; \overline{W}) = \sum_{i=1}^{2} w_i c_i(P)$

$$C(R; \overline{w}) = \sum_{j=1}^{2} w_j c_j(R)$$

where $w_j \epsilon[0,1]$
and $\sum_{j=1}^{2} w_j = 1$

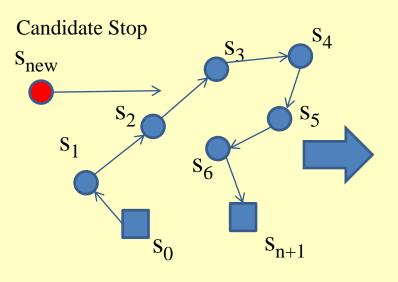
- Ehrgott, 2005.

SOLUTION ALGORITHM (2/9)

- THE CLASSIC SINGLE-CRITERION VRP (TIME-DEPENDENT OR NOT) IS DEFINED ON A COMPLETE GRAPH WHERE EACH LINK DENOTES AN A PRIORI SELECTED PATH
- THIS CONVENTION DOES NOT WORK FOR THE VRPTW PROBLEMS ARISING FROM THE APPLICATION OF THE WEIGHTING METHOD:
 - DIFFERENT COMBINATION OF WEIGHTS IN THE OBJECTIVE FUNCTION MAY LEAD TO DIFFERENT SHORTEST PATHS BETWEEN ANY PAIR OF STOPS FOR DIFFERENT DEPARTURE TIMES.
 - FOR ANY PAIR OF STOPS, IT IS BURDENSOME TO CALCULATE IN ADVANCE THE LIST OF SHORTEST PATHS FOR ANY POSSIBLE COMBINATION OF WEIGHTS AND DEPARTURE TIMES.

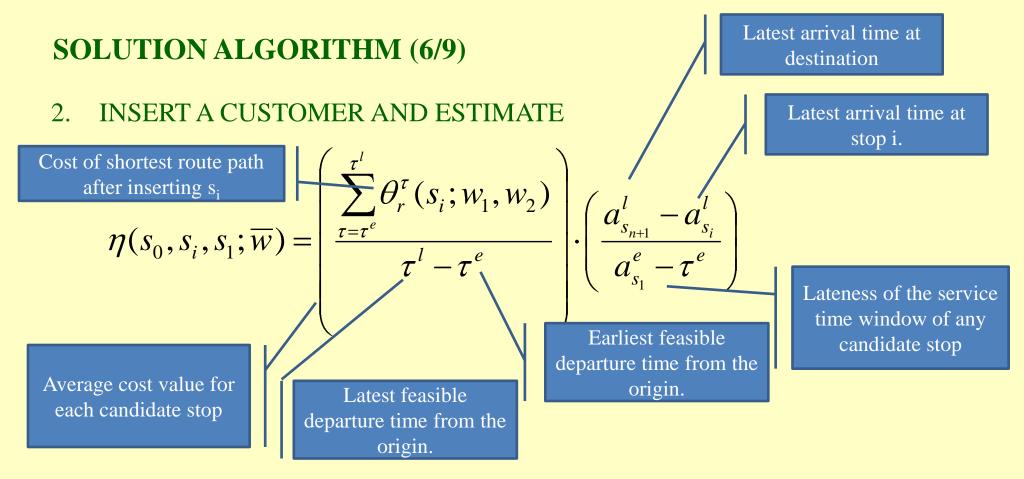
SOLUTION ALGORITHM (3/9)

- THEREFORE WE SHOULD DEAL SIMULTANEOUSLY WITH TWO PROBLEMS
 - SPECIFY SEQUENCE OF STOPS (ROUTE)
 - FIND PATH BETWEEN ANY TWO CONSECUTIVE STOPS
- SEQUENTIAL ROUTE CONSTRUCTION HEURISTIC WHERE EACH NEW CUSTOMER IS INSERTED AT THE BEGINNING OF THE ROUTE (1ST CANDIDATE POSITION)


SOLUTION ALGORITHM (4/9)

- 1. FOR EACH CANDIDATE CUSTOMER (LOAD FEASIBLE), WE CALCULATE TDSP FOR ALL POSSIBLE DEPARTURE TIMES
 - ASSOCIATED TRAVEL TIMES ARE CALCULATED USING THE IMPROVED QUADRATIC TRAVEL MODEL

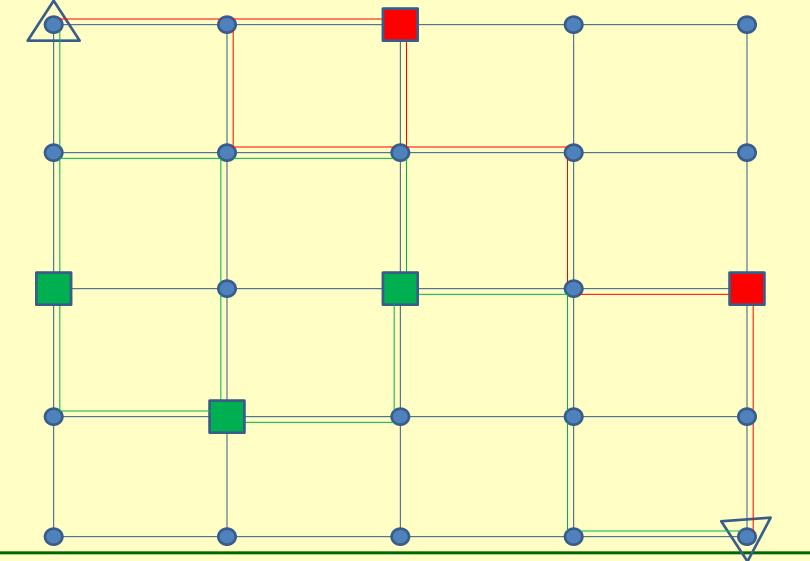
SOLUTION ALGORITHM (5/9)


Candidate Stop S_3 S_4 S_{new} S_2 S_5 S_1 S_6 S_5 S_6 S_{n+1}

Required Path Finding Calculations for (s_0, s_{new}, s_1) -Find shortest paths from $s_{new} \rightarrow s_{n+1}$ through $\{s_1, s_2, s_3, s_4, s_5, s_6\}$, by applying the label setting algorithm from s_{new} to s_1 - Find shortest paths from $s_0 \rightarrow s_{n+1}$ through $\{s_{new}, s_1, s_2, s_3, s_4, s_5, s_6\}$, by applying the label setting algorithm from s_0 to s_{new}

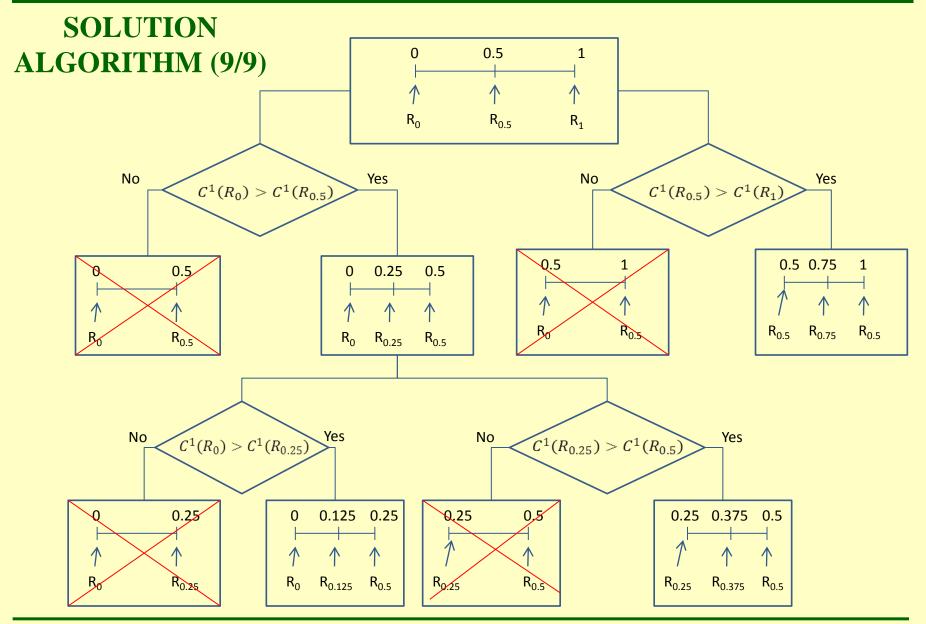
Required Path Finding Calculations for (s_2,s_{new},s_3) -Find shortest paths from $s_{new} \rightarrow s_{n+1}$ through $\{s_3, s_4, s_5, s_6\}$, by applying the label setting algorithm from s_{new} to s_3 - Find shortest paths from $s_2 \rightarrow s_{n+1}$ through $\{s_{new}, s_3, s_4, s_5, s_6\}$, by applying the label setting algorithm from s_2 to s_{new} - Find shortest paths from $s_1 \rightarrow s_{n+1}$ through $\{s_2, s_{new}, s_3, s_4, s_5, s_6\}$, by applying the label setting algorithm from s_1 to s_2 - Find shortest paths from $s_0 \rightarrow s_{n+1}$ through $\{s_1, s_2, s_{new}, s_3, s_4, s_5, s_5, s_6\}$, by applying the label setting algorithm from s_0 to s_1

3. INSERT CUSTOMER WITH THE LOWER INSERTION COST



SOLUTION ALGORITHM (7/9)

- 4. IF VEHICLE CAPACITY IS VIOLATED OR NO NEW CUSTOMER CAN BE INSERTED, CLOSE CURRENT ROUTE
- 5. UPON THE CLOSURE OF A ROUTE, ONE SCHEDULED PATH HAS BEEN DETERMINED FOR EACH POSSIBLE DEPARTURE TIME FROM THE ORIGIN. AMONG THE LIST OF SCHEDULED PATHS FROM THE ORIGIN, **RETAIN** THE ONE WITH THE **MINIMUM COST VALUE** – EXCLUDE THE REST
- 6. IF ALL CUSTOMERS ARE ROUTED, TERMINATE. OTHERWISE START A NEW ROUTE AND REPEAT



SOLUTION ALGORITHM (8/9)

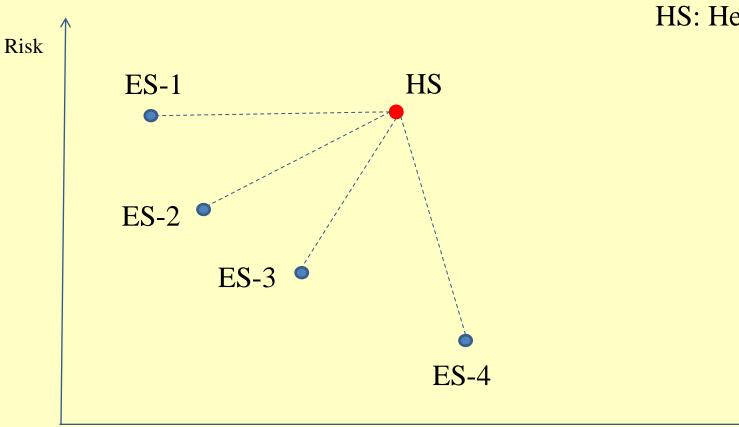
12th Swiss Transport Research Conference (STRC), May 2-4, 2012

12th Swiss Transport Research Conference (STRC), May 2-4, 2012

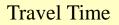
COMPUTATIONAL PERFORMANCE (1/5)

TESTING ACCURACY

- SMALL TEST PROBLEMS
- ➤ COMPLY WITH STRUCTURE OF A REAL-LIFE PROBLEM
- SOLVABLE BY A MIXED INTEGER PROGRAMMING (MIP) SOLVER
- TIME-DEPENDENT LOAD-INVARIANT RISK VALUES
- ➤ 49 NODES
- ➢ GRID-LIKE NETWORK
- ➢ FIVE CUSTOMERS



COMPUTATIONAL PERFORMANCE (2/5)


- DEMAND RANDOMLY SPECIFIED / RANGE: 2-4 TONS
- ➤ TRUCK CAPACITY: 10 TONS
- > DIFFERENT ORIGIN / DESTINATION
- ► EARLIEST DEPARTURE LATEST ARRIVAL: 60 min.
- ≻ TIME WINDOW: 10 min.
- ▶ 168 LINKS
- ≻ RANDOM LINK LENGTH 600-900m

COMPUTATIONAL PERFORMANCE (3/5)

ES: Exact Solution HS: Heuristic Solution

COMPUTATIONAL PERFORMANCE (4/5)

➢ HEURISTIC SOLUTIONS WERE COMPARED TO EXACT (USING THE EXACT SOLUTION WITH THE MINIMUM EUCLIDEAN DISTANCE) SOLUTIONS BY CALCULATING THE PERCENTAGE DIFFERENCE OF TRAVEL TIME AND RISK

► TRAVEL TIME DIFFERENCE 11.1%

► RISK DIFFERENCE 14.6%

WORST HEURISTIC TRAVEL TIME 36.4%
WORST HEURISTIC RISK 48.3%

SUBSTANTIAL DIFFERENCES IN COMPUTATIONAL TIME (15 sec. Vs. 5,000 sec)

COMPUTATIONAL PERFORMANCE (5/5)

- COMPUTATIONAL TIME INCREASES WITH TIME WINDOW WIDTH AND NUMBER OF CUSTOMERS

Test Problem	Number of customers	Depot Time window (min)	Average Number of Problems Solved	Average number of solutions	Average Computational Time (in sec)	Average Comp. Time per problem solved (sec)
1	10	120	17	7	104.5	5.9
2	10	180	18	7	233.8	12.8
3	20	120	20	5	281.4	13.9
4	20	180	20	8	512.75	25.2

CONCLUDING REMARKS

➢ BI-OBJECTIVE TIME-DEPENDENT VRP WITH TIME WINDOWS

SIMULTANEOUS PATH FINDING AND SCHEDULING

➢ USE OF PIECE-WISE LINEAR TRAVEL SPEED ENHANCED RELIABILITY IN SATISFYING SERVICE TIME WINDOWS

≻ RISK MODEL

- TIME-DEPENDENT ACCIDENT PROBABILITIES
- LOAD-DEPENDENT POPULATION EXPOSURE

FUTURE RESEARCH DIRECTIONS

 SIMILAR MODEL AND SOLUTION ALGORITHM CAN BE USED FOR THE TIME DEPENDENT AND LOAD DEPENDENT POLLUTION-ROUTING PROBLEM
 TRAVEL TIME
 CO₂ EMISSIONS

➢ METAHEURISTICS (ANT COLONY SYSTEM) CAN BE USED TO IMPROVE SOLUTION QUALITY

> DEVELOP METHODOLOGIES FOR ESTIMATING TIME AND LOAD DEPENDENT RISK VALUES

ACKNOWLEDGMENTS

This work was partially supported by the Research Center of the Athens University of Economics and Business (AUEB-RC) through the project EP-1809-01

REFERENCES (1/2)

- Androutsopoulos, K.N. and K.G. Zografos (2012). A Bi-objective Time-Dependent Vehicle Routing and Scheduling Problem for Hazardous Materials Distribution, *EURO Journal on Transportation and Logistics*, available online.
- Chabini, I., (1998). Discrete Dynamic Shortest Path Problems in Transportation Applications, *Transportation Research Record: Journal of the Transportation Research Board*, 1645, pp. 170-175.
- Ehrgott, M. (2005). Multicriteria Optimization, Springer Berlin-Heidelberg.
- Erkut, E., S.A. Tjandra, and V. Verter (2007). Hazardous Materials Transportation, Chapter in: *Handbook in OR & MS*, Edited by C. Barnhart and G. Laporte, 14, pp. 539-621.
- Horn, M., (2000). Efficient Modelling of Travel Time in Networks with Time-Varying Link Speeds, *Networks*, 36(2), pp. 80-90.
- Ichoua, S., M. Gendreau and J. Potvin (2003). Vehicle Dispatching with Time-Dependent Travel Times, *European Journal of Operational Research*, 144, 379-396.
- Mainiero, R.J., J.H. Rowland III (2009). A Review of Recent Accidents Involving Explosives Transport, *Journal of Explosives Engineering*, 26(2), pp.6-12.
- Malandraki, C. and M. Daskin (1992). Time-Dependent Vehicle Routing Problems: Formulations, Properties and Heuristic Algorithms, *Transportation Science*, 26(3), pp. 185-200.

REFERENCES (2/2)

- Pallotino, S. and M.G. Scutella (1997). *Shortest Path Algorithms in Transportation Models: Classical and Innovative Aspects*. University of Pisa, Department of Informatics, Technical Report TR-97-06, April 14, 1997.
- U.S. Bureau of Transportation Statistics (2010). 2007 Economic Census, *Transportation*, 2007 *Commodity Flow Survey*.
- U.S. Code of Federal Regulations, 49CFR ("Transportation"), 105.
- U.S. Department of Transportation (2011). *Top Consequence Hazardous Materials by Commodities and Failure Modes 2005-2009*, Pipeline and Hazardous Materials Safety Administration, Issue 3, 09/01/2011.
- Zografos, K.G. and K.N. Androutsopoulos (2008). A decision support system for integrated hazardous materials routing and emergency response decisions, *Transportation Research Part C: Emerging Technologies*, 16 (6) , pp. 684-703.
- Zografos, K.G. and C.F. Davis (1989). A Multiobjective Programming Approach for Routing Hazardous Materials, *ASCE Transportation Engineering Journal*, 115(6), pp. 661-673.