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Abstract

To address the underreporting of freight from a transport geography point of view, we present
a descriptive paper of the time and spatial characteristics of disaggregated commercial vehicle
activities. The activities were extracted from raw GPS data collected over a six-month period
for more than 30,000 commercial vehicles. We provide a comparison of commercial activity
metrics for the small province of Gauteng in South Africa. The province represents less than
1.5% of the country’s land surface, yet produces in excess of 30% of the gross domestic product
of the country. In response to the South African government’s intent to better understand freight
movement at a detailed, non-macroeconomic level, this paper is significant as it provides a
means to support government’s transport infrastructure investment decisions. Although the
activity densities contradict some accepted expectations found in litarature, it highlights some
of the impacts of past political inequalities still evident in South Africa, again providing value
inputs to policy making.

Although the study has been conducted within a South African context, the approach of ex-
tracting commercial activities will be relevant to an international community of researchers.
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1 Introduction

As participants in the economy, we take part in various activities such as work, residential,
leisure, shopping, and many others. These activities are separated in both space and time,
implying that some form of transport will be required. But economic activities also imply
the provision, distribution, and consumption of goods and services. These too are connected
through different means of transport.

Hesse and Rodrigue (2004) argue that freight transport is not merely a derived demand. Lo-
gistics are no longer just means to overcome space, but has a critical time component. The
extention of supply chain structures, outsourced and subcontracted across vast geographic ar-
eas have resulted in smaller consignments delivered more frequently. As supply chains increase
in complexity, activities of production, distribution and consumption are increasingly difficult
to separate.

The objective of this paper is to report on an exercise in which we aim to better understand
the movements of commercial vehicles. In processing GPS points collected for more than
30,000 vehicles over a six month period, we extract and evaluate activity locations, densities
of the activities, and charatceristics of the chains of activities that vehicles follow. GPS studies
about people movement and their acitivities abound. Consider, for example, the works of
Yalamanchili et al. (1999); Draijer et al. (2000); Wolf et al. (2001, 2004); Marchal et al. (2005);
Tsui and Shalaby (2006); Schüssler and Axhausen (2009).

Ambrosini and Routhier (2004) review urban freight modelling efforts accross nine industri-
alized countries. The methods and tools included theoretical models, interviews, surveys, and
experiments. In response to the review, Figliozzi (2007) notes that studies concerning vehicle
activity chains are absent. Although still based on zonal aggregates, Friedrich et al. (2007)
report on recent models where activity chain generation has been accounted for. As with other
top-down multiclass assignment models based on the four step modelling approach, the aggre-
gate models lack the ability to capture individual stakeholders’ behaviour.

In this paper we address that lack of understanding of commercial vehicle chains. In Section 2
we explain our process of extracting and inferring activities from GPS data. Section 3 reports
on some of the intial results. The results look at the both vehicle activity and chain character-
istics, and activity densities from a geographic point of view. The paper concludes with a biref
research agenda.
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Figure 1: Process flow for the vehicle activity chains

2 Activity inferring

The data used to infer commercial vehicle activities was provided by DigiCore Holdings Lim-

ited, a commercial fleet management company based in South Africa. The company provides
vehicle tracking service to its customers, with tracking devices not only recording location
information, but also various engine and electronic triggers, including temperature, water lev-
els, braking, ignition activity, tampering with the GPS unit, triggering of the panic alarm, and
opening and closing of vehicle doors, to name but a few.

A single file containing all the GPS log records for commercial vehicles for the six months 1
January 2008 to 30 June 2008 was provided to us. We then followed the process depicted in
Figure 1 to extract commercial activity chains from raw GPS data.

Each log record has six fields: 1) a unique vehicle identifier; 2) a seconds-based Unix time
stamp; 3) a longitude and 4) latitude value, both in decimal degrees according to the WGS 84
reference coordinate system used by global positioning systems; 5) a vehicle status identifier
used by DigiCore for fleet management purposes; and 6) a speed value.With a total file size in
excess of 30 Gigabyte, the first step was to split the data into seperate files, one for each vehi-
cle. A total of 31,041 vehicle files were identified, and each had to be sorted chronologically
according to the time field. Since sorting was considered a time-intensive operation, we limited
the files to only those vehicles that had GPS log records within the province of Gauteng. Once
identified, the vehicle files were sorted. Gauteng was chosen since it is the economically most
active province in South Africa. Accounting for only 1.5% of the land surface, it accounts for
more than 30% of the country’s Gross Domestic Product (GDP).

In this study we focussed on ignition-related triggers to identify activity start and stop times.
An activity start was identified as the point when an ignition off trigger is received, and an
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activity stops when the ignition is turned on again. To eliminate any false starts or false stops,
such as a failed engine start attempt requiring the driver to switch the ignition off and back
on before starting again, we provided an arbitrary threshold for activity duration of 8 minutes.
The threshold is assumed realistic since commercial vehicles are involved in time-consuming
loading, unloading and refuelling activities. Using vehicle status triggers to identify activities,
as opposed to recurring geo-locations, allowed us to avoid identifying a heavy vehicle waiting
to cross a busy intersection, or short stops at toll gates, as potential activities.

The complete list of sequential activities was then categorised as being either a major, last-
ing in excess of 5 hours, or a minor activity, lasting less than 5 hours. Figure 2 shows the
activity durations of all activities before chains were identified. The threshold of 5 hours was
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Figure 2: Histogram of all activity durations. The threshold of 300 minutes (5 hours) between
minor and major activities is indicated.

arbitrarily chosen since no empirical evidence was found suggesting an intuitive, definite and
distinguishable difference in activity durations.

Consider, as one detailed example, the GPS logs, and identified activities presented in Figure 3.
This particular vehicle only performed activities within a very small extent during the entire
study period, and illustrates the locations of both major and minor activities. We did not map
the vehicle movement to the road network, mainly because the GPS log records in our data set
were too infrequent (300 seconds under normal operating conditions when no other trigger is
received).

Whenever a major activity was identified, a new activity chain was created, starting with the
major activity. Subsequent minor activities were added sequentially until the next major activity
was identified. Once all activities were chained, the chains were cleaned: any chain not starting
and ending with a major activity was removed to ensure only complete chains were evaluated.
Chains containing only two major activities were considered mere relocations, and since they
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Figure 3: Example of extracting vehicle activities from raw GPS data.

made up a very small proportion of the activity chains, they were also removed.

3 Results

The more than 10.5-million identified activities were spread across southern Africa, all the way
into the southern regions of the Democratic Republic of Congo. Of interest to us were the activ-
ities across South Africa. We estimated the density of commercial vehicle activities through the
kernel density estimation implementation of ESRI ArcGIS—popularized by Silverman (1986)’s
quadratic kernel function. Conceptually, kernel density estimation fits a smooth surface over
each point. The volume under the surface equals the estimate number of activities in that grid
cell. The density map of minor activities illustrated in Figure 4 used a grid size of 500 × 500

meters, with a search radius of 5000 meters. Activity densities for major activities follows a
very similar pattern, but due to space the figure has been omitted here. Three areas of interest
are highlighted in the figure: the economically active province of Gauteng; KwaZulu-Natal
with activity consentration around the port of Durban; and the Western Cape with the activity
densest around the port area.

Once the activities and activity chains were extracted, we were able to further distinguish be-
tween within and through traffic. In Figure 5 we observe the percentage of vehicles that spend
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Figure 5: A histogram comparing the proportion of vehicle activities that vehicles associated
with the study area spend within the study areas.

a certain percentage of their time (number of activities) in one of the three areas. To explain
how to interpret the figure, consider for example the bars at the 100% mark of the percentage
of activities axis. In the case of Gauteng, 35% of vehicles that pass through Gauteng, have
more than 90% of all their activities in Gauteng, the other activities are outside. About 55% of
vehicles that travel in Kwazulu Natal or the Western Cape, have more than 90% of its activities
in that area. All vehicles with more than 90% of their activities in a single area is considered
within vehicles, while the remainder are considered through vehicles.

For the remainder of the paper, we will evaluate the chain characteristics of vehicles passing
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through Gauteng only. The average number of activities per chain, as depicted in Figure 6
differ between within vehicles and through vehicles, with the latter having much longer chains.
The chain duration, depicted on the right in Figure 6, also shows through vehicles having
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Figure 6: A comparison of the average number of activities per chain (left), and the average
chain duration (right) between within and through vehicles.

longer chains. Since through traffic may be associated with long-haul transportation, the longer
duration of through vehicle chains is intuitively expected.

The activity start times are depicted in Figure 7. The start times for minor activities of through
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Figure 7: Activity start times.

vehicles is slightly more spread out than that of within vehicles, yet following a very similar
distribution. The two distributions of major activities are less similar, although both seems to
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peak at 22:00 in the evening. Through vehicles seem to have a much more distinct distribution,
while the within vehicles’ distribution is multimodal. We also expected that as the number of
minor activity starts decreases, the number of major activity starts increases.

Knowing not only when the activities occur, but also where, allows us to a spatial element
to the activities. Figure 8 illustrates the number of minor activities starting between 08:00
and 08:59 (as an example). The demarcation used is that of the Geospatial Analysis Platform

Number of activities
0 - 5000
5001 - 20000
20001 - 40000
40001 - 80000
80001 - 110000
110001 - 220000

Figure 8: Spatial distribution of minor activities starting between 08:00 and 08:59.

(GAP) mesozones (CSIR Built Environment, 2007, 2009; Naudé et al., 2007). Having local
knowledge of the area, the high density of activities in more industrial areas are expected,
yet without having further information about the underlying land use, we can do very little
statistical confirmation, relying merely on observational inference.

4 Conclusion

In this paper we reported on the initial inferring of commercial vehicle activities from GPS
data without having any additional information about the vehicles, or its activitities. The results
allow us to accurately sample from the start time, duration, and chain length distributions. Such
sampling makes it possible to generate synthetic commercial vehicle populations for future
simulations.

Further refinements to this paper are due. We have made a number of arbitrary choices in
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inferring activities, such as minor activities lasting being between 8 and 300 minutes. These
parameters must be established and tested more rigorously. The results reported on in this paper
provide a decent base to understand the movement of comemrcial vehicles, but still requires a
lot more thorough statistical inference before being considered rigurous.
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