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Swiss Transport Researh Conferene Otober 15 - 17, 2008Spei�ation, estimation and validation of a pedestrianwalking behaviour modelThomas Robin Gianlua Antonini Mihel Bierlaire Javier CruzTRANSP-OR, EPFL IBM Researh GmbH TRANSP-OR, EPFL TRANSP-OR, EPFLLausanne Zurih Lausanne LausanneTel: +41 21 6932435 Tel: +41 44 7248688 Tel: +41 21 6932537 Tel: +41 21 6932435Fax: +41 21 6938060 Fax: +41 44 7248953 Fax: +41 21 6938060 Fax: +41 21 6938060thomas.robin�ep�.h GAN�zurih.ibm.om mihel.bierlaire�ep�.h javier.ruz�ep�.hAbstratWe propose and validate a model for pedestrian walking behaviour, based on disretehoie modelling. We are interested in modelling the short range behaviour in normalonditions, as a reation to the surrounding environment and to the presene of otherindividuals. The term �normal� refers to non-evauation and non-pani situations. Twomain behaviours are identi�ed: unonstrained and onstrained. The unonstraineddeisions are independent from the presene of others pedestrians whereas onstraineddeisions are indued by interations with other individuals. Conerning the disretehoie model arhiteture, the spatial orrelation between the alternatives is taken intoaount de�ning a ross nested logit model. The nests onern the diretion ones andspeed regimes. The model has been estimated by maximum likelihood on a Japanesedataset, using the free distributed Biogeme pakage. The dataset onsists of pedes-trians trajetories manually traked from video sequenes. It has been olleted on alarge pedestrian rossing road in Sendaï, Japan, on August 2000. The estimated oef-�ients are signi�ant and their signs are onsistent with our behavioural assumptions.The model has been validated using a two steps proedure. The �rst step onsists inthe spei�ation validation using the estimation dataset, the seond is the preditionevaluation using a Duth dataset not involved in the estimation proess. It is the exper-imental version of the Japanese dataset, olleted at the Delft university in 2000-2001.The model has been ompared to a simple model with more parameters (the utility ofeah alternative ontains only a onstant) to illustrate the importane of the explana-tory variables. The proposed validation proedure underlines a good stability of themodel and a good generalization performane.
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Swiss Transport Researh Conferene Otober 15 - 17, 20081 IntrodutionPedestrian behavior modeling is an important topi in di�erent ontexts. Arhitetsare interested in understanding how individuals move into buildings to reate optimalspae designs. Transport engineers fae the problem of integration of transportationfailities, with partiular emphasis on safety issues for pedestrians. Reent tragi eventshave inreased the interest for automati video surveillane systems, able to monitorpedestrian �ows in publi spaes, throwing alarms when abnormal behavior ours.Speial emphasis has been given to more spei� evauation senarios, for obvious rea-sons. In this spirit, it is important to de�ne mathematial models based on behavioralassumptions, tested by means of proper statistial methods. Data olletion for pedes-trian dynamis is partiularly di�ult and only few models presented in the literaturehave been alibrated and validated on real data sets.Previous methods for pedestrian behavior modeling an be lassi�ed into two main at-egories: mirosopi and marosopi models. In the last years muh more attentionhas foused on mirosopi modeling, where eah pedestrian is modeled as an agent.Examples of mirosopi models are the soial fores model in Helbing and Molnar(1995) and Helbing et al. (2002) where the authors use Newtonian mehanis with aontinuous spae representation to model long-range interations, and the multi-layerutility maximization model by Hoogendoorn et al. (2002) and Daamen (2004).Leader-follower and ollision avoidane behavior play a major role in explaining pedes-trian movements. In order to inlude these aspets in our model, we took inspirationfrom previous ar following models in transport engineering (inluding Newell, 1961,Herman and Rothery, 1965, Lee, 1966, Ahmed, 1999). The main idea in these modelsis that two vehiles are involved in a ar following situation when a subjet vehilefollows a leader, normally represented by the vehile in front, reating to its ations.In general, a sensitivity-stimulus framework is adopted. Aording to this framework adriver reats to stimuli from the environment, where the stimulus is usually the leader'srelative speed. Di�erent models di�er in the spei�ation of the sensitivity term. Thismodeling idea is extended here and adapted to the more omplex ase of pedestrianbehavior. We want to stress the fat that in driver behavior modeling a distintion be-tween aeleration and diretion (or lane) is almost natural (see Toledo, 2003 and Toledoet al., 2003), being suggested by the transport faility itself, organized into lanes. Thepedestrian ase is more omplex, sine movements are two-dimensional on the walkingplane, where aeleration and diretion hanges are not easily separable. Constrainedbehavior in general, and ollision avoidane in partiular are also inspired by studies inhuman sienes and psyhology, leading to the onept of personal spae (see Horowitzet al., 1964, Dosey and Meisels, 1969 and Sommer, 1969).The validation of pedestrian walking models is a di�ult task, and has not been exten-sively reported in the literature. Berrou et al. (2007) and Kretz et al. (2008) validatetheir model by omparing real and simulated �ows and densities at bottleneks. Bro-gan and Johnson (2003) ompare real walking paths with simulated paths using three3



Swiss Transport Researh Conferene Otober 15 - 17, 2008di�erent metris: the distane error, that is the mean distane between the real and thesimulated path for all simulation time steps, the area error, that is the area betweenthe two paths, and the speed error, that is the mean di�erene in speed between thetwo paths for all simulation time steps.2 Modeling frameworkIn this work we refer to the general framework for pedestrian behavior desribed byDaamen (2004). Individuals make di�erent deisions, following a hierarhial sheme:strategial, tatial and operational. Destinations and ativities are hosen at a strate-gial level; the order of the ativity exeution, the ativity area hoie and route hoieare performed at the tatial level, while instantaneous deisions suh as walking andstops are taken at the operational level. In this paper, we fous on pedestrian walkingbehavior, naturally identi�ed by the operational level of the hierarhy just desribed.We onsider that strategi and tatial deisions have been exogenously made, and areinterested in modeling the short range behavior in normal onditions, as a reation tothe surrounding environment and to the presene of other individuals. By�normal� wemean non-evauation and non-pani situations.The motivations and the soundness of disrete hoie methods have been addressedin our introdutory work (Bierlaire et al., 2003, Antonini, Bierlaire and Weber, 2006,Antonini and Bierlaire, 2007). The objetive of this paper is twofold. First, we aim toprovide an extended disaggregate, fully estimable behavioral model, alibrated on realpedestrian trajetories manually traked from video sequenes. Seond, we want to testthe oherene, interpretability and generalization power of the proposed spei�ationthrough a detailed validation on external data. Compared with Antonini, Bierlaire andWeber (2006), we present three important ontributions: (i) we estimate the modelusing signi�antly more data representing revealed walking behavior, (ii) the modelspei�ation expliitly aptures leader-follower and ollision-avoidane patterns and (iii)the model is suessfully validated both using ross-validation on the estimation dataset, and foreasting validation on another experimental data set, not involved in theestimation proess.We illustrate in Figure 1 the behavioral framework. Unonstrained deisions are inde-pendent of the presene of other pedestrians and are generated by subjetive and/orunobserved fators. The �rst of these fators is represented by the individual's desti-nation. It is assumed to be exogenous to the model. The seond fator is representedby the tendeny of people to keep their urrent diretion, minimizing their angulardisplaement. Finally, unonstrained aeleration and deeleration are ditated by theindividual's desired speed. The implementation of these ideas is made through the threeunonstrained patterns indiated in Figure 1.We assume that behavioral onstraints are indued by interations with other indi-viduals nearby. The ollision avoidane pattern is designed to apture the e�ets of4



Swiss Transport Researh Conferene Otober 15 - 17, 2008Pedestrian walking behavior
Unonstrained Constrained

Keep Toward Free �owdiretion destination a/de Collision Leaderavoidane followerFigure 1: Coneptual framework for pedestrian walking behaviorpossible ollisions on the urrent trajetory of the deision maker. The leader-followerpattern is designed to apture the tendeny of people to follow another individual in arowd, in order to bene�t from the spae she reates.The disrete hoie model introdued by Antonini, Bierlaire and Weber (2006) is ex-tended here. The basi elements are the same and summarized below. Pedestrianmovements and interations take plae on the horizontal walking plane. The spatialresolution depends on the urrent speed vetor of the individuals. The geometrialelements of the spae model are illustrated in Figure 2.
θn

pn ≡ (xn, yn)

vndn

Figure 2: The basi geometrial elements of the spae strutureIn a given oordinate system, the urrent position of the deision maker n is pn ≡

(xn, yn), her urrent speed vn ∈ IR, her urrent diretion is dn ∈ IR2 (normalized suhthat ‖dn‖ = 1) and her visual angle is θn (typially, θn = 170◦). The region of interestis situated in front of the pedestrian, ideally overlapping with her visual �eld. Anindividual-spei� and adaptive disretization of the spae is obtained to generate a setof possible plaes for the next step. Three speed regimes are onsidered. The individualan aelerate to 1.5 times her speed, deelerate to half time her speed, or maintainher urrent speed. Therefore, the next position will lie in one of the zones, as depitedin Figure 3(b). For a given time step t (typially, 1 seond), the deeleration zones5



Swiss Transport Researh Conferene Otober 15 - 17, 2008range from 0.25vnt to 0.75vnt, with the enter being at 0.5vnt, the onstant speedzones range from 0.75vnt to 1.25vnt, with the enter being at vnt, and the aelerationzones range from 1.25vnt to 1.75vnt, with the enter being at 1.5vnt. With respet tothe diretion, a disretization into 11 radial diretions is used, as illustrated in Figure3(a), where the angular amplitudes of the radial ones are reported in degrees.
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cvd = pn + vtd, (1)where t is the time step. The hoie set varies with diretion and speed and so doesthe distane between an alternative's enter and other pedestrians.3 The modelIndividuals walk on a 2D plane and we model two kinds of behavior: hanges in di-retion and hanges in speed, i.e. aelerations. Five behavioral patterns are de�ned:6



Swiss Transport Researh Conferene Otober 15 - 17, 2008
1 2 3 4 5 6 7 8 9 10 111213 14 1516171819 20 2122232425 28 313233Figure 4: Choie set representation, with numbering of alternativeskeep diretion, toward destination, free �ow aeleration, leader-follower and ollision-avoidane. In a disrete hoie ontext, they have to be onsidered as terms enteringthe utility funtions of eah alternative. The utilities desribe the spae around the de-ision maker and under the assumption of rational behavior, the individual hooses theloation (alternative) with the maximum utility. The details of the model are disussedin a referened artile (see Robin et al., n.d.).4 DataThe data set used to estimate the model onsists of pedestrian trajetories manuallytraked from video sequenes.It was olleted in Sendai, Japan, in August 2000 (see Teknomo et al., 2000, Teknomo,2002). The video sequene was reorded from the 6th �oor of the JTB parking building,situated at an important pedestrian rossing. Two main pedestrian �ows ross thestreet, giving rise to a large number of interations. A frame extrated from this videois represented in Figure 5.The data set onsists of 190 pedestrian trajetories, manually traked at a rate of 2 pro-essed frames per seond, for a total number of 10200 position observations. The map-ping between the image plane and the walking plane was performed by Arsenal Researh(Bauer, 2007) using a 3D-alibration with the standard DLT algorithm (Shapiro, 1978).The referene system on the walking plane has the origin arbitrarily plaed at the bot-tom left orner of the ross-walk. The x axis represents the width of the rossing whilethe y axis represents the length.For eah frame, the following information for eah visible pedestrian was olleted: (i)the time t orresponding to the frame f (in this ase t = f/2), (ii) the pedestrianidenti�er n, and (iii) the oordinates pf

n
= (xf

n
, yf

n
) identifying the loation of thepedestrian in the walking plane. In Figure 6 we report the speed histogram and inTable 1 the speed statistis. 7
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(a) Japanese senarioFigure 5: A frame from the Japanese video Mean 1.31Standard Error 0.012Median 1.27Mode 1.28Standard Deviation 0.37Minimum 0.43Maximum 4.84Table 1: Speed statistis (m/se). Note that standard error is the estimated standarddeviation of the sample mean
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Swiss Transport Researh Conferene Otober 15 - 17, 2008Then, a spei� hoie set (see Figure 4) was onstruted for eah pedestrian, basedon (1) where t = 1 se (that is, 2 frames), v = vn for onstant speed alternatives,
v = 0.5vn for deelerated alternatives, v = 1.5vn for aelerated alternatives, d = dnfor alternatives in one 6 (alt. 6, 17, 28), and d = rot(dn, ζ) is obtained by rotating dnaround pn with an angle ζ orresponding to the one, that isCone 1: ζ = 72.5◦, Cone 11: ζ = −72.5◦,Cone 2: ζ = 50◦, Cone 10: ζ = −50◦,Cone 3: ζ = 32.5◦, Cone 9: ζ = −32.5◦,Cone 4: ζ = 20◦, Cone 8: ζ = −20◦,Cone 5: ζ = 10◦, Cone 7: ζ = −10◦.For eah ell in the hoie set, eah variable interfering in the utility was then omputed(see Robin et al., n.d.). Note that the destination of eah individual was de�ned byher loation in the last frame where she is visible. Finally, the hosen alternative hasbeen identi�ed as the ell ontaining the pedestrian's loation after 1 seond, that is
pf+2

n . In the rare instanes where pf+2

n did not belong to any ell (beause of numerialerrors due to poor image resolution, or extreme speed variations), the orrespondingpiee of data was removed from the sample (a total of 919 observations). We representin Figure 7 seleted generated hoie sets on a given trajetory (representing them allwould have been unreadable).
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Figure 7: Example of one manually traked trajetory with hoie setsWe obtain a total of 9281 observations from 190 pedestrians. In Figure 8 we report thefrequeny of the revealed hoies as observed in the data set. The three peaks in thedistributions arise on the entral alternatives (6, 17, 28), as expeted. Note that ells 1,12, 23 and 33 were never hosen in this sample. A summary of the observations arossthe nests is detailed in Table 2.5 Estimation resultsTable 3 presents the estimation results. The parameters were estimated using Biogeme(Bierlaire, 2003, biogeme.ep�.h). All estimates have the expeted sign.In addition to the proposed model, we analyze also a simple model, where the utility ofeah alternative is represented only by an alternative spei� onstant. This onstant-only model perfetly reprodues the observed shares in the sample, with 28 parameters9
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Figure 8: Revealed hoies histogramsNest # steps % of totalaeleration 1065 11.48%onstant speed 7565 81.51%deeleration 651 7.01%entral 4297 46.30%not entral 4984 53.70%Table 2: Number of hosen steps in eah nest for the real data set(33 alternatives, minus 4 whih are never hosen, minus one onstant normalized to0), but does not apture any ausal e�et. With this model, the loglikelihood dropsfrom −13944.74 to −17972.03, illustrating the statistial signi�ane of the proposedspei�ation. Note that a lassial likelihood ratio test is not appropriate here, as thehypotheses are not nested. We believe that a more rigorous test is not really neessarygiven the huge jump in loglikelihood value.Sample size = 9281 Init log-likelihood = -32451Nbr of estimated parameters = 24 Final log-likelihood = -13944.74	ρ2 = 0.570 Likelihood ratio test = 37013Table 3: CNL estimation results for the Japanese data set
10



Swiss Transport Researh Conferene Otober 15 - 17, 20086 Model validationTwo data sets are used for validation: the Japanese data set used for estimation anddesribed in Setion 4, and a data set olleted in the Netherlands, whih was notinvolved at all in the estimation of the parameters.6.1 Japanese data set: validation of the modelWe �rst apply our model with the parameters desribed in Table 3 on the Japanesedata set, using Biosim (Bierlaire, 2003). For eah observation n, we obtain a probabilitydistribution Pn(i) over the hoie set.Figure 9 represents the histogram of the probability value Pn(i∗
n
) assigned by the modelto the hosen alternative i∗

n
of eah observation n, along with the hazard value 1/33(where 33 is the number of alternatives). We onsider observations below this thresholdas outliers. There are only 7.10% of them. As a omparison, there are 19.90% of outlierswith the onstant-only model.

Figure 9: Predited probabilities of the Japanese dataThe top part of Figure 10 reports, for eah i, ∑
n

Pn(i), and the bottom part reports
∑

n
yin, where yin is 1 if alternative i is seleted for observation n, 0 otherwise. Asexpeted, the two histograms are similar, indiating no major spei�ation error.This is on�rmed when alternatives are aggregated together, by diretions (see Table4) and by speed regimes (see Table 5). For a group Γ of alternatives, the quantities

MΓ =
∑

n

∑
i∈Γ

Pn(i),

RΓ =
∑

n

∑
i∈Γ

yin,11



Swiss Transport Researh Conferene Otober 15 - 17, 2008and
(MΓ − RΓ)/RΓare reported in olumns 3, 4 and 5, respetively, of these tables.The relative errors showed in Table 4 and Table 5 are low, exept for groups of alterna-tives with few observations, that is groups orresponding to extreme left and extremeright diretions.

(a) Predited shares

(b) Observed sharesFigure 10: Predited and observed shares for the Japanese data set6.2 Japanese data set: validation of the spei�ationIn order to test the proposed spei�ation, we have performed a ross validation doneon the Japanese data set. It onsists in splitting the data set into 5 subsets, eahontaining 20% of the observations. We perform 5 experiments. For eah of them,one of the �ve subsets is saved for validation purposes, and the model is re-estimated12



Swiss Transport Researh Conferene Otober 15 - 17, 2008Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 8486.16 8481 0.0006Left 3, 4, 14, 15, 25, 26 348.86 367 −0.0494Right 8, 9, 19, 20, 30, 31 419.29. 407 0.0302Extreme left 1, 2, 12, 13, 23, 24 12.29 10 0.2292Extreme right 10, 11, 21, 22, 32, 33 14.39 16 −0.1004Table 4: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by diretionswith the Japanese data setArea Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 1059.85 1065 −0.0048onstant speed 12 − 22 7588.28 7565 0.0031deeleration 23 − 33 632.87 651 −0.0279Table 5: Predited and observed shares for alternatives grouped by speed regime withthe Japanese data set.on the remaining 4 subsets. The same proedure has been applied with the onstant-only model. The proportion of outliers for eah experiment is reported in Table 6.We observe that they are onsistent with 7.10% (for our model) and 19.90% (for theonstant-only model) of outliers obtained with the omplete data set, illustrating therobustness of the spei�ation.Model Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5Proposed spe. 8.62% 6.52% 7.44% 7.87% 5.87%Constant only 20.79% 20.70% 17.13% 19.88% 18.64%Table 6: Summary of the ross-validation performed on the Japanese data setThe above analysis indiates a good spei�ation and performane of the model. How-ever, it is not su�ient to fully validate it. Consequently, we perform now the sameanalysis on a validation data set, not involved in the estimation of the model.6.3 Duth data set: validation of the modelThis data set was olleted at Delft University, in the period 2000-2001 (Daamen andHoogendoorn, 2003b, Daamen and Hoogendoorn, 2003a, Daamen, 2004) where volunteerpedestrians (about 80) were alled to perform spei� walking tasks in a ontrolledexperimental setup (experiment 4 in Daamen and Hoogendoorn, 2003a)For the purposes of our validation proedure we use the subset of the Duth data setorresponding to a bi-diretional �ow. This situation is the experimental version of theJapanese data set, whih orresponds to a walkway. The subset inludes 724 subjets13



Swiss Transport Researh Conferene Otober 15 - 17, 2008for 47481 observed positions, olleted by means of pedestrian traking tehniques onvideo sequenes, at a frequeny of 10Hz, that is 10 frames per seond. In Figure 11 wereport one frame from the experimental senario.For eah frame, we olleted for eah visible pedestrian the time t orresponding tothe frame f (in this ase t = f/10), the pedestrian identi�er n, and the oordinates
pf

n
= (xf

n
, yf

n
) identifying the loation of the pedestrian in the walking plane. Fromthese raw data, we derived the urrent diretion and speed of eah pedestrian using theurrent and previous frames, that is

dn = pf

n − pf−1

n ,

vn = ‖dn‖/0.1 = 10‖dn‖.Consistent with the model assumptions, the hosen alternative has been identi�ed asthe ell ontaining the pedestrian's loation after 1 seond, that is pf+10
n .A summary of the observations aross nests is detailed in Table 7. Note the very lownumber of deelerations and aelerations, probably due to the experimental nature ofthe data.

Figure 11: A representative frame from the video sequenes used for data olletionNest # steps % of totalaeleration 1273 2.68%onstant speed 45869 96.61%deeleration 339 0.71%entral 20950 44.12%not entral 26531 55.88%Table 7: Number of hosen steps in eah nest for Duth dataWe ompare the observed hoies for the Japanese and the Duth data set in Table 8and Figure 12. Table 8 reports the perentage of observations for ells at the extremeleft of the hoie set (alts. 1, 2, 12, 13, 23, 24), the left part (alts. 3, 4, 14, 15,25, 26), the front (alts. 5-7, 16-18, 27-29), the right (alts. 8, 9, 19, 20, 30, 31) and14



Swiss Transport Researh Conferene Otober 15 - 17, 2008the extreme right ( 10, 11, 21, 22, 32, 33). Figure 12 reports normalized observation,that is, for eah alternative i, ∑
n

yin/N, where yin is 1 if alternative i is seleted forobservation n, 0 otherwise, and N is the total number of observations. We observe agreat similarity in the observed proportions, exept for alternatives orresponding toaelerations and deelerations. This suggests that a simple model, with only alternativespei� onstants, may atually perform well on this data set. We show below, howeverthat this is not the ase.Data set Extreme left Left Front Right Extreme rightJapanese 0.11% 3.95% 91.38% 4.39% 0.17%Duth 0.06% 4.40% 91.35% 4.15% 0.04%Table 8: Comparison between Japanese and Duth data sets for the observations pro-portions in the diretion's ones
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Figure 12: Comparison between the Japanese and Duth normalized observation dis-tributions aross the alternativesWe applied our model with the parameters desribed in Table 3 on the Duth data set,using the Biosim pakage. For eah observation n, we obtain a probability distribution
Pn(i) over the hoie set.Figure 13 represents the histogram of the probabilities Pn(i∗

n
) of the hosen alternativesas predited by the model, as well as the hazard value 1/33 (where 33 is the numberof alternatives) illustrating the predition of a purely random model with equal proba-bilities. Again, we onsider observations below this threshold as outliers. We observethat there are 2.41% of them. This is good news, as it is atually less than for the dataset used for parameter estimation. The shape of the urve, as well as the low numberof outliers are signs of the good performane of the model. When we ompare it withpreditions obtained with the onstant-only model (Figure 14), the superior foreastingpotential of our model is lear. 15



Swiss Transport Researh Conferene Otober 15 - 17, 2008The signi�ant superiority of our model over the onstant-only model is also illustratedby omparing the proportion of outliers (2.41% vs. 10.31%) or the loglikelihood (-51303.58 vs. -77269.28, as detailed in Table 14).

Figure 13: Predition with the proposed model

Figure 14: Predition with the onstant-only and proposed modelWe now ompare the preditions performed by our model with the atual observa-tions. The top part of Figure 15 reports the predited probabilities obtained by sampleenumeration, that is, for eah i, ∑
n

Pn(i), and the bottom part the observed shares,that is ∑
n

yin. The preditions are very satisfatory, exept maybe for deelerations(alternatives 22 to 33) and aelerations (alternatives 1 to 11).16
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(a) Predited

(b) ObservedFigure 15: Choie histogram predited by the model against revealed hoies in theDuth data setCone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43552.36 43374 0.0041Left 3, 4, 14, 15, 25, 26 1948.77 2089 −0.0671Right 8, 9, 19, 20, 30, 31 1853.34 1972 −0.0602Extreme left 1, 2, 12, 13, 23, 24 43.91 27 0.6261Extreme right 10, 11, 21, 22, 32, 33 82.62 19 3.3485Table 9: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by diretionswith the Duth data set. 17



Swiss Transport Researh Conferene Otober 15 - 17, 2008Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 4022.32 1273 2.1597onstant speed 12 − 22 40581.06 45869 −0.1153deeleration 23 − 33 2877.62 339 7.4886Table 10: Predited (MΓ) and observed (RΓ) shares for alternatives grouped by speedregime with the Duth data set.We also perform the omparison at a more aggregate level, for groups of ells. Tables9 and 10 show a good overall performane of the model. Clearly, the extreme leftand extreme right groups ontain too few observations to reah any onlusions.The only bias seems to onsist in a systemati over-predition of aelerations anddeelerations. This is onsistent with the above-desribed analysis. The Duth dataset was olleted in ontrolled experimental onditions, whih may have introdued abias in pedestrian behavior, depending on the exat instrutions they have reeived.This assumption is supported by the quasi absene of deelerations in the data set, andby the di�erent shapes of the speed distributions (see Figure 16). While the Japaneseurve appears to be Gaussian, the Duth urves ontain some non-Gaussian featureswhih are likely the result of the experimental nature of the data.Data Set Mean speed [m/s℄Duth (experimental) 1.297Japanese (real) 1.341Table 11: Average pedestrian speed in the data sets
0.15

0.2

0.25

fr
e

q
u

e
n

cy

Japanese and Dutch speed distribution

Dutch

Japanese

0

0.05

0.1

0.47 0.56 0.65 0.74 0.83 0.92 1.01 1.10 1.19 1.28 1.37 1.46 1.55 1.64 1.73 1.82 1.91 2.00 2.08 2.17 2.26 2.35

fr
e

q
u

e
n

cy

speed (m/s)

Japanese

Figure 16: Distribution of speed in the two data setsWe now report the same aggregate predition obtained with the onstant-only modelin Tables 12 and 13. The good performane of this simple model at the aggregatelevel emphasizes the need for the disaggregate validation performed above. Indeed,the relatively good performane of the model is due to the oinidental similarity ofproportions of hosen alternatives in the two data sets (see Table 8). The detailed18



Swiss Transport Researh Conferene Otober 15 - 17, 2008analysis presented in Figure 14 learly rejets the simple model, while the aggregateanalysis does not.Cone Γ MΓ RΓ (MΓ − RΓ)/RΓFront 5 − 7, 16 − 18, 27 − 29 43386.42 43374 0.0003Left 3, 4, 14, 15, 25, 26 1877.47 2089 −0.1013Right 8, 9, 19, 20, 30, 31 2082.10 1972 0.0558Extreme left 1, 2, 12, 13, 23, 24 51.16 27 0.8947Extreme right 10, 11, 21, 22, 32, 33 81.85 19 3.308Table 12: Predited (MΓ) using the onstant-only model and observed (RΓ) shares foralternatives grouped by diretion with the Duth data set.Area Γ MΓ RΓ (MΓ − RΓ)/RΓaeleration 1 − 11 5448.24 1273 3.2798onstant speed 12 − 22 38700.42 45869 −0.1563deeleration 23 − 33 3330.34 339 8.824Table 13: Predited (MΓ) using the onstant-only model and observed (RΓ) shares foralternatives grouped by speed regime with the Duth data set.For the sake of ompleteness, a onstant-only model was alibrated on the Duth dataset, in the same way as for the Japanese. Our model estimated on the Japanese datais better than the onstant-only model estimated on the Duth data, when applied onthe Duth data set, both in terms of log-likelihood (-51303.58 against -71847.69) andpredition (2.41 %, perentage of outliers against 4.33%). We have summarized thevarious loglikelihood values in Table 14, where eah olumn orresponds to a model,and eah row to a data set.Constant-only model Constant-only modelData set Our model based on Japanese data based on Duth dataJapanese -13944.74 -17972.03 �Duth -51303.58 -77269.28 -71847.69Table 14: Loglikelihood of eah model applied to the two data sets
7 ConlusionsIn this paper we propose a disrete hoie model of pedestrian walking behavior. Theshort range walking behavior of individuals is modeled, identifying two main patterns:onstrained and unonstrained. The onstraints are generated by the interations withother individuals. We desribe interations in terms of leader-follower , and ollision19



Swiss Transport Researh Conferene Otober 15 - 17, 2008avoidane model. These models apture self-organizing e�ets whih are harateristiof rowd behavior, suh as lane formation. Inspiration for the mathematial form ofthese patterns is taken from driver behavior in transportation siene, and ideas suh asthe ar following model and lane hanging models have been reviewed and re-adapted tothe more omplex pedestrian ase. The di�ulties of olleting pedestrian data as wellas the limited information onveyed by pure dynami data sets limit the possibilitiesin model spei�ation. Important individual e�ets annot be aptured without thesupport of soio-eonomi harateristis. Reent development of pedestrian laborato-ries (see among others Daamen and Hoogendoorn, 2003a, Nagai et al., 2005, Helbinget al., 2005, Cepolina and Tyler, 2005, Kretz et al., 2006), where ontrolled experi-mental onditions are possible, represent an important step in this diretion. We useexperimental data in a two step validation proedure. First, the model is validatedon the same data set used for estimation in order to hek for possible spei�ationerrors. Seond, the model is run on a new data set olleted at Delft University underontrolled experimental onditions. The proposed validation proedure suggests goodstability of the model and good foreasting performane. Few observations are badlypredited, mostly onentrated at the extremes of the hoie set. The estimated oef-�ients are signi�ant and their signs are onsistent with our behavioral assumptions.As opposed to other previous models, we an quantify the in�uene of the relative kine-mati harateristis of leaders and olliders on deision-maker behavior. Moreover,suh quantitative analysis has been performed using real world pedestrian data.The validation proedure is rather omplete, sine it involves several models, inlud-ing a simple one, and analyzes the results both at an aggregate and a disaggregatelevel. The next step would be to validate the model within atual tools, suh as pedes-trian simulators or automati video traking systems (Antonini, Venegas, Bierlaire andThiran, 2006).AknowledgmentsWe are very grateful to Kardi Teknomo and Dietmar Bauer (Arsenal Researh) andSerge Hoogendoorn and Winnie Daamen (TU Delft), who provided us with the datasets.ReferenesAhmed, K. I. (1999). Modeling drivers' aeleration and lane hanging behaviors.,PhD thesis, Massahusetts Institute of Tehnology, Cambridge, MA.Antonini, G. and Bierlaire, M. (2007). A disrete hoie framework for aelerationand diretion hange behaviors in walking pedestrians, in N. Waldau, P. Gatter-20
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