

Open Platform for Urban Simulation

STRC 2005

Paul Waddell University of Washington

Outline

- Integrated Land Use Transport Modeling
- UrbanSim
- Opus Who, What, Why

Integrated Land Use - Transport Modeling

Goal:

 Improve Transport, Land Use and Environmental Policies and Investments – <u>Considering their</u> <u>Interactions</u>

Means:

- Models of Markets: Demand, Supply, Policies
 - Real Estate, Transport, Labor

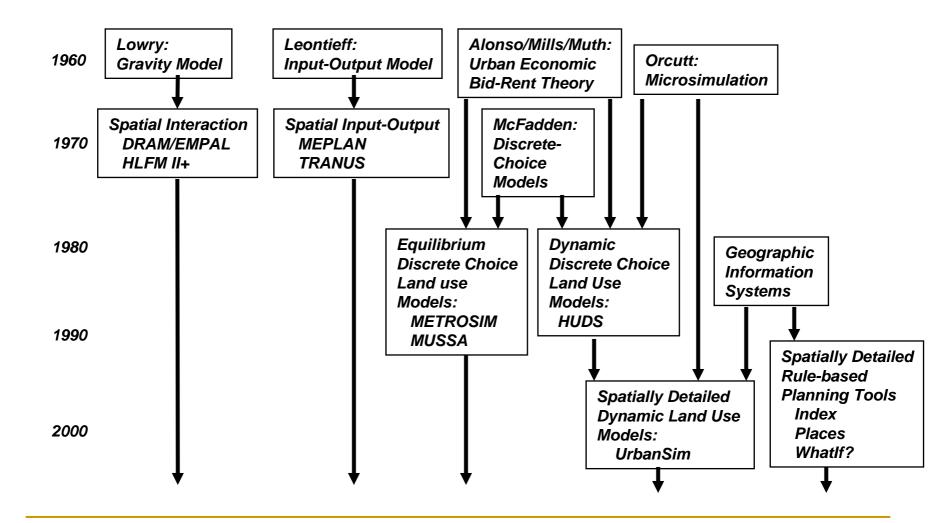
Economic, Social and Environmental Assessment

Land Use - Transportation Interaction

Traditional Approach

Land Use

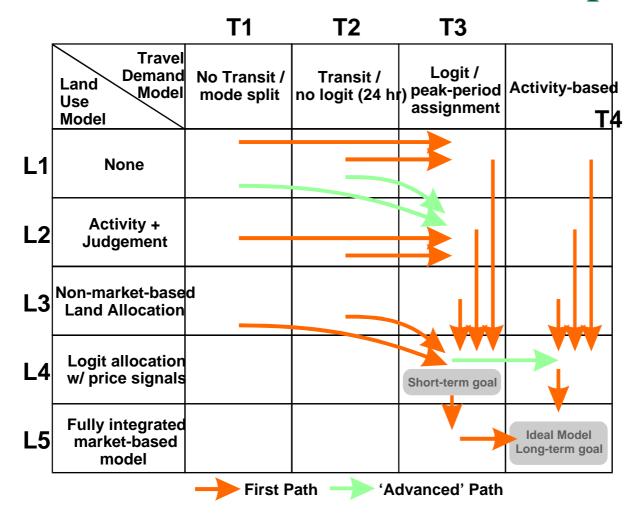
Transportation


Integrated Modeling

Integrated Land Use – Transport Models

- From ~ 1970:
 - Dram/Empal Putman
 - Meplan Cambridge Echenique
 - Tranus Caracas de la Barra
- From ~ 2000:
 - Delta London Simmonds
 - ILUMASS Dortmund Wegener
 - ILUTE Toronto Miller
 - Metrosim Buffalo Anas
 - MUSSA Santiago Martinez
 - Pecas Calgary Hunt
 - UrbanSim Seattle Waddell

Evolution of Land Use Models


Emerging Common Design Elements

- Agent-level Microsimulation
 - Households persons
 - Firms jobs
 - Parcels grid cells
- Dynamic Path-dependence
 - Real estate demand changes rapidly
 - Real estate development takes time to respond
 - Disequilibrium is the norm: "Boom and Bust"
 - History affects current choices

Emerging Common Design Elements

- Many Key Processes are Choice Problems
 - Household Residential Location
 - Household Vehicle Ownership
 - Individual Workplace
 - Firm Location
 - Real Estate Development
- Increasing Use of Discrete Choice Models
- Convergence with Activity-based Travel Modeling

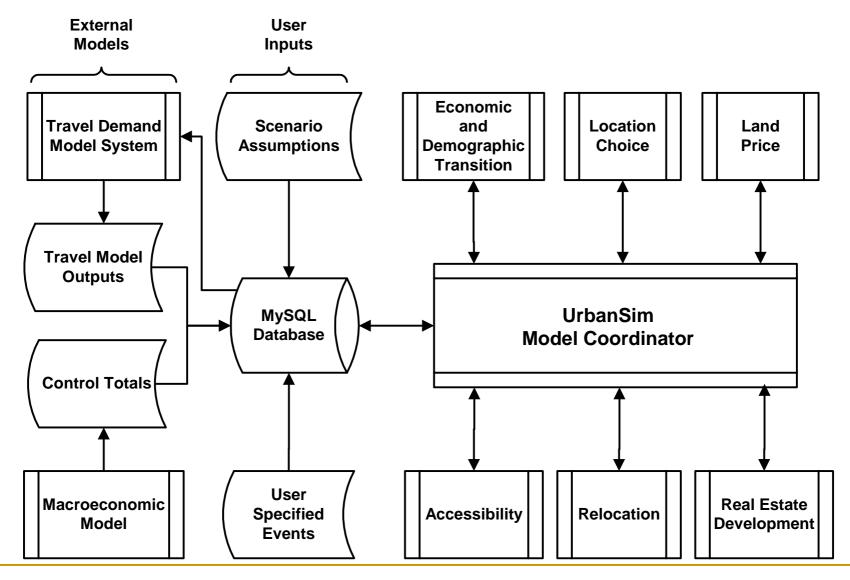
Evolution of Land Use – Transport Models

Source: Miller, Kriger and Hunt 1998

UrbanSim

- Designed as a Land Use Model to Couple to Existing 4-Step Travel Models
- Applications in Multiple Metropolitan Areas
- Funded Mainly by National Science Foundation
 - Urban Research Initiative
 - Information Technology Research
 - Digital Government
 - Biocomplexity
- Collaborators from Multiple Disciplines
- Open Source Software (www.urbansim.org)

UrbanSim: Data Inputs/Outputs


- Inputs
 - Regional Control Totals
 - Parcel Data
 - Business Establishments
 - Household Data (Census, Travel Survey)
 - Land Use Plan
 - Environmental Constraints
- Outputs by traffic analysis zone and grid cell
 - Households by Income, Age, Size, Children, Workers
 - Employment by Industry Sector
 - Land Use and Density
 - Housing Units, Commercial SQFT, Prices by Type

UrbanSim Model Components

Household and Employment Mobility and Location

- Multinomial logit
- Grid cell is choice outcome
- Individual household or job is unit of analysis
- Real Estate Development
 - Multinomial logit
 - 24 development type outcomes
 - Grid cell is unit of analysis
- Real Estate Price Estimation
 - Hedonic regression
 - Grid cell is unit of analysis

UrbanSim Model Structure

UrbanSim Software Architecture

- UrbanSim uses a set of component models representing actors and processes in the urban environment:
 - Land price
 - Real estate developer
 - Residential location
 - Employment location
 - Demographic transition
 - Economic transition
 - travel

- Conflicting demands component models
 - should be as independent as possible to facilitate evolution and change
 - need to be able to interact efficiently
- Approach:
 - "pluggable models" these communicate only via a shared database of grid cell and other data, not directly with each other

UrbanSim – Travel Model Interactions

Travel Model

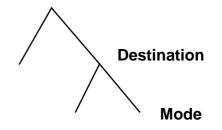
UrbanSim

Logsum-based Measures of Accessibility Accessibility to employment

$$Access_i = \sum_j Jobs_j e^{Logsum_{ij}}$$

Logsum from Mode Choice

Trip-Weighted Measures of Accessibility
Accessibility for Home-based Work Purpose


$$Access_{i} = \frac{\sum_{j} (Trips_{ij}Logsum_{ij})}{\sum_{j} Trips_{ij}}$$

Logsum from Mode Choice

- Accessibility from Combined Destination and Mode Choice
 - Accessibility for Home-based Work Purpose

 $Access_i = Logsum_i$

Logsum from Destination & Mode Choice

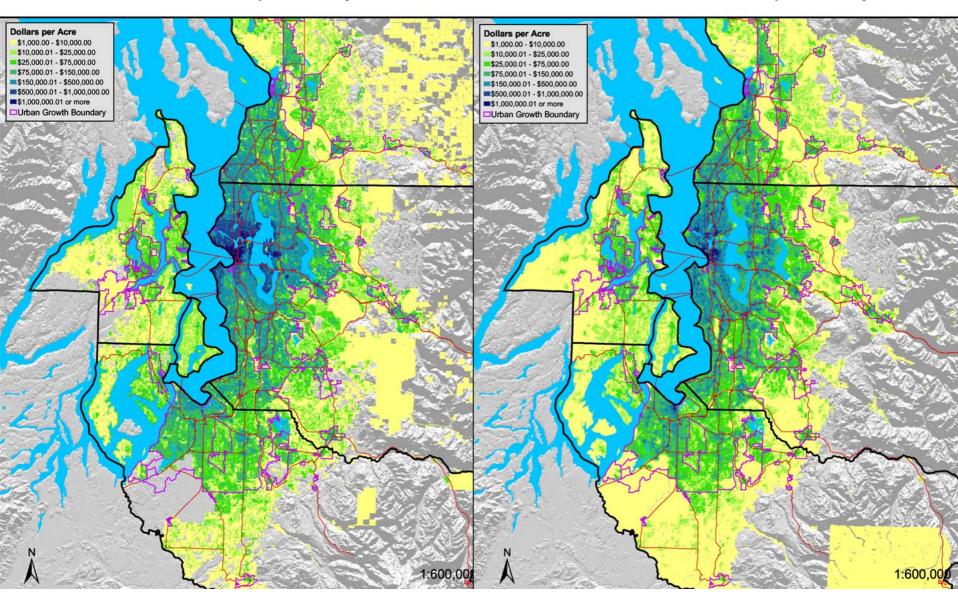
- Activity-based modeling opens new opportunities:
 - Long-term choices given:
 - Residence location
 - Workplace
 - School location
- Accessibility is an **individual** expectation
 - Time
 - Cost
 - Reliability

UrbanSim Walking-Scale Accessibility

- Most Travel Models Limited in Measuring Pedestrian-scale Accessibility
 - Large Zones
 - Coarse Networks
 - Difficulties Predicting Intra-zonal Travel
 - Difficulties Predicting Walking Trips
- UrbanSim Augments Travel Models by
 - Measuring Walking-scale Accessibility
 - Walking-distance (e.g. 600 meters) Radius
 - Measure Access to Shopping and Other Activities

150 Meter Grid Cells And Parcels

Land Price


$$\ln(P_i) = \alpha + \beta S_i + \delta N_i + \gamma A_i + \varepsilon_i$$

S is a set of site attributes N is a set of neighborhood attributes A is a set of accessibility attributes

- Predicts grid cell land price
- Multiple regression (hedonic) specification
- Used sample of 100,000 cells
- Explains 80% of variation
- Example of variables used:
 - Type of development in cell
 - Residential, Mixed Use, Commercial, Industrial, Government
 - Travel time to Seattle CBD
 - Highway
 - Adjacency; distance from
 - Housing units
 - In cell; within walking distance
 - Commercial sqft
 - In cell; within walking distance
 - Employment within walking distance
 - Percent: floodplain; water; wetland; open space; public land
 - Land Use Plan designation

PSRC Region 2000 Total Land Value per Acre by Gridcell

PSRC Region Predicted 2000 Total Land Value per Acre by Gridcell

Household Location Choice

- Predicts grid cell location choice
- Applies to new and moving households
- Multinomial Logit specification
- Used 1999 Household Travel Survey
 - 2,364 households who moved within 5 yrs
- Example of Variables used:
 - Housing cost to income ratio
 - Income * improvement value/unit
 - Trip-weighted utility for HBW by SOV; Transit
 - Near arterial road
 - Housing density within walking distance
 - Housing density if HH has children
 - High density if HH is young
 - Mixed use development if HH is young
 - Percent High Income if HH is high income
 - Percent Mid Income if HH is mid income
 - Percent Low Income if HH is low income
 - Percent Minority if HH is minority
 - Percent Minority if HH is not minority

 $U_{i} = u_{i} + \mathcal{E}_{i}$ $P_{i} = \frac{e^{\beta_{i} \cdot x}}{\sum_{\forall i'} e^{\beta_{i'} \cdot x}}$

Employment Location Choice

- Predicts grid cell location choice
- Applies to new and moving jobs
- Multinomial Logit specification
- 1995-2000 TAZ employment change
- Example of Variables used:
 - Land value in area
 - Total value of land and improvements
 - Trip-weighted (destination) utility for HBW by SOV
 - Travel time to Seattle CBD
 - Employment by sector in area
 - Industrial; commercial sqft
 - Near arterial road
 - Near highway
 - Housing density in area
 - Percent low income in area; mid-income
 - Building age

Real Estate Development Model

- Predicts grid cell development events
- Multinomial Logit specification

- One equation per starting development type
- Used 1995-2000 development events
- Example of Variables used:
 - Value of land and improvements
 - Land value per acre in area
 - Employment by sector in area
 - Housing units in area
 - Proximity to existing development
 - Development composition in area
 - Recent development events in area
 - Travel time to Seattle CBD
 - Trip-weighted travel utility
 - Highway adjacency and distance from
 - Percent: floodplain; water; wetland; stream buffer; steep slope

 $P_{i} = \frac{e^{-\beta_{i} \cdot x}}{\sum_{\forall i'} e^{-\beta_{i'} \cdot x}}$

 $U_{i} = u_{i} + \mathcal{E}_{i}$

Problems (Research Opportunities)

- Coupling with 4-Step Travel Models
 - Slow and Theoretically Limiting
- Coupling of Model Estimation and Prediction
 - Separate Processes Slow and Error Prone
 - Need to Explore More Complex Model Structures
- Software Implementation
 - + Robust and efficient Java code
 - + Good Development Methodology (Test/Build)
 - But Too Complex: difficult to diagnose, extend
- Individual Model Components Need Refinement
- Need Improved System Validation Techniques

UrbanSim – Agenda

Reimplement System

- Python + numarray: Faster, Less Code, Clearer
- Modular "Plug-and-play" Model Components
- Integrate Model Estimation and Application
- Integrate with Activity-Based Travel Model
- Integrate with Assignment
- Integrate with Air Quality Models

There is too much to do without collaboration!

A Vision: International Collaboration

- We are not the Only Project with these Aims..
 - □ ILUTE, ILUMASS, Albatross, etc.
 - Similar in many design respects
 - Share many implementation requirements
- Why not Cooperate?
 - Create Common Core Architecture
 - Develop Interoperable Components
 - Reduce Resource Requirements
 - Focus Effort
 - Publish more Papers

Opus: An Infrastructute for Collaboration

- Open Platform for Urban Simulation
 - Must be Open Source
 - Must be Very Modular
 - Must Have Clear API
 - Must Accommodate Components Written in
 - C++, C, Python, probably also Java
 - Must Support Incremental Development
 - Interface Existing Software Components
 - Refine Components and Interfaces Incrementally
 - Must Support Remote Collaboration

Why Open Source?

- Consistent With Academic Research Standards
 - Transparency
 - Verifiability
 - Reproducibility
- Precondition for Open Collaboration
 - Symmetric incentives to share information
- Productivity: Leverage Existing Components
- Protection:
 - Users Access to Software
 - Developers Access to Software
 - From Liability
- Robustness
 - Increases Number of People Checking Code

A Complete Open Source System???

- Model Components
 - From UrbanSim,ILUTE,ILUMASS...
 - Household and Firm Evolution (Demography)
 - Household and Firm Relocation/Location Choice
 - Real Estate Development
 - Workplace Choice
 - Vehicle Ownership
 - □ From CEMDAP, FAMOS, Albatross...
 - Activity Schedule, Destination, Mode Choices
 - □ From MATSIM, SUMO, Ciudadsim...
 - Traffic Assignment

A Complete Open Source System???

- Software Components
 - □ From Biogeme, R...
 - Model Estimation
 - □ From MySQL, Postgress...
 - Database Management
 - From Saga, TerraLib, Thuban...
 - GIS functionality
 - From wxWidgets, OpenGL...
 - Graphical User Interface
 - □ From Python...
 - Scripting Language

It Has Been Done in Another Domain

- Computational Statistics
- Commercial Product: S+ -> Open Source Version: R
 - R now widely recognized as a standard
- Core System
 - Shell with Basic GUI
 - Scripting Statistical Language
 - User-Contributed Packages
 - Standardized API
 - Standardized Documentation
 - 30 Seconds to Install a Package from Web
- Emerging Publishing Standard:
 - Papers publishing a new statistical method now commonly release an R Package implementing it, with test data.

Will this Be Difficult to Do for Land Use – Transport Modeling?

Of course!

- Coordination of Diverse Objectives
- Globally Dispersed Collaborators
- Theoretical Challenges
- Technical Integration Challenges
- Disagreement on Design Choices
- Resources
- But the statistical computing community has overcome similar challenges...

Is it Worth Trying?

?