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Abstract

In this paper, we discuss some of the issues that arise with the computation of the implied value
of travel-time savings in the case of discrete choice models allowing for random taste hetero-
geneity. We specifically look at the case of models producing a non-zero probability of positive
travel-time coefficients, and discuss the consistency of such estimates with theories of rational
economic behaviour. We then describe how the presence of unobserved travel-experience at-
tributes or conjoint activities can bias the estimation of the travel-time coefficient, and can lead
to false conclusions with regards to the existence of negative valuations of travel-time savings.
We note that while it is important not to interpret such estimates as travel-time coefficients per
se, it is nevertheless similarly important to allow such effects to manifest themselves; as such,
the use of distributions with fixed bounds is inappropriate. On the other hand, the use of un-
bounded distributions can lead to further problems, as their shape (especially in the case of
symmetrical distributions) can falsely imply the presence of positive estimates. We note that
a preferable solution is to use bounded distributions where the bounds are estimated from the
data during model calibration. This allows for the effects of data impurities or model misspec-
ifications to manifest themselves, while reducing the risk of bias as a result of the shape of
the distribution. To conclude, a brief application is conducted to support the theoretical claims
made in the paper.
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1 Introduction

Random utility models have been used extensively in the field of transportation research for over
thirty years. Initially, virtually all applications were based on the Multinomial Logit (MNL)
model (McFadden 1974), which, although easy to implement and estimate, is limited in its
scope due to a set of stringent assumptions, notably with regards to the nature of the substi-
tution patterns across alternatives, and the assumption of a complete absence of random taste
heterogeneity across decision-makers. The former restriction was eased by the introduction of
a family of models known as Generalised Extreme Value (GEV) models, of which the best-
known example is the Nested Logit (NL) model (Williams 1977, Daly & Zachary 1979, Mc-
Fadden 1978); for an overview of existing GEV model structures, see for example Ben-Akiva
& Bierlaire (2003) and Train (2003). Two other types of models, the Multinomial Probit (MNP)
model (c.f. Daganzo 1979) and the Mixed Multinomial Logit (MMNL) model (c.f. McFadden
& Train 2000), allow for a heightened level of flexibility by specifying the taste coefficients to
be randomly distributed across decision-makers. Additionally, these models have the ability to
closely replicate the correlation structure of any type of GEV model (McFadden & Train 2000
in fact show that the MMNL model can approximate the behaviour of any random utility model
arbitrarily closely). Researchers have recently begun to increasingly exploit the power of the
MMNL model in particular.

One specific area in which random utility models have been used repeatedly is the computation
of value of travel-time savings (VTTS) measures, with some recent discussions of the topic
including Algers et al. (1998), Hensher (2001a,b,c), Lapparent & de Palma (2002), Cherchi &
Ortuzar (2003), Jara-Diaz & Guevara (2003), Perez et al. (2003), Cirillo & Axhausen (2004)
and Sillano & Ortuzar (2004). The VTTS is an important willingness-to-pay indicator, used for
example for cost-benefit analysis in the context of planning new transport systems, or for pric-
ing. In discrete choice models, the computation of VTTS measures is relatively straightforward,
especially in the case of models using linear utility functions based on fixed taste coefficients.
Indeed, if the deterministic partV of the utilities in the model contains a travel-time attribute
TT and a travel-cost attributeTC, the VTTS measure is simply computed as:

∂V/∂TT

∂V/∂TC
(1)

With the commonly used linear-in-variables utility function, this formula reduces toβTT /βTC ,
whereβTT andβTC are the time and cost coefficients, giving the marginal utilities of increases
by one unit in travel-time and travel-cost respectively. Estimates of these marginal utilities
are produced by calibrating the model on the choice data used in the estimation. It should be
noted that the calculation in equation (1) is based on the assumption that the derivative of the
unobserved part of utility with respect to travel-time and travel-cost is zero; that is, all the effects
of these two factors are captured in the deterministic part.

With the increased use of the MMNL model in the area of transportation, researchers have
begun to exploit the power of this model to represent a random variation in the marginal utility
of travel-time across respondents. However, the extension of the theoretical foundations of the
calculation of VTTS to the case whereβTT and/orβTC are modelled as random variables is not
straightforward. The objective of this paper is to highlight one of several critical issues arising
in the computation of VTTS in MMNL models; the possibility of obtaining results that indicate
a non-zero share of respondents with negative valuations of travel-time savings. We present a
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rigourous discussion that questions the validity of such results, including theoretical arguments
from the econometric as well as from the microeconomic viewpoints. The theoretical arguments
are supported by the results of a brief empirical application. Even though several of the issues
highlighted in the paper are separately discussed in the existing literature, the authors are not
aware of previous work that has integrated these considerations in the context of the estimation
of VTTS.

The remainder of this paper is organised as follows. In the next section, we briefly review
the theory on the random-coefficients formulation of the MMNL model, and discuss the issue
of the choice of distribution for randomly distributed coefficients. In Section 3, we discuss
the interpretation of results showing a non-zero probability of positive travel-time coefficients;
the consistency of such estimates with economic theory is discussed in Section 4. Section 5
contains a brief application complementing the theoretical discussions presented in this paper,
while Section 6 presents the conclusions of the present paper.

2 Random coefficients model

In the random-coefficients MMNL model, the parameter vectorβ used in the calculation of
the utility is assumed to be randomly distributed rather than fixed, such that the MNL choice
probability for alternativei and decision-makern, Pni (β, xni), is replaced by:

Pni =

∫
β

Pni (β, xni) f (β, Ω) dβ, (2)

whereΩ is a vector of parameters of the distribution of the elements contained in the vectorβ,
giving for example the means and standard deviations across the population. Three main speci-
fication issues arise with the use of the MMNL model; the selection of which parameters should
be modelled as being randomly distributed across agents, the choice of statistical distribution for
these coefficients, and the economic interpretation of randomly distributed coefficients. These
three aspects of the specification of heterogeneity are all clearly closely inter-related. In this pa-
per, we concentrate specifically on the latter two points and consider in particular the problems
that can arise in the case where the chosen distribution allows for positive as well as negative
coefficient values.

One example of a parameter for which such random taste heterogeneity has repeatedly been
shown to exist is the marginal utility of travel-time (e.g. Algers et al. 1998, Cirillo & Axhausen
2004). The choice of distribution for this coefficient plays a crucial role in the modelling pro-
cess. Indeed, in models that are based on the use of fixed taste coefficients, researchers generally
have ana priori expectation of obtaining a negative travel-time coefficient, and models produc-
ing positive values will normally be rejected on the grounds of model misspecification (or lack
of explanatory power in the data). While the sign-issue is thus relatively straightforward in the
case of fixed-coefficients models, it becomes more complicated in the case of models allowing
for random taste heterogeneity. Indeed, in such models, the use of an unbounded distribution
can lead to a non-zero probability of positive as well as negative travel-time parameters. It may
be tempting to explain this by the notion that for some decision-makers (or for some activities),
travel-time has a positive marginal utility, and there is some evidence in the literature that seems
to suggest that this is indeed the case, as discussed in Section 3. However, it is not clear a priori
whether model estimates showing a significant probability of a positive travel-time coefficient
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do in fact indicate the presence of such values in the population, or whether they are simply an
artefact of the model specification or the poor quality of the data used in model estimation.

One potential source of model misspecification can come in the form of an inappropriate choice
of mixing distribution for the travel-time coefficient. The distribution most commonly used in
MMNL models is theNormal (Gaussian) distribution. The fact that theNormal distribution
is unbounded means that every real number has a non-zero probability of being produced as a
draw; specifying a given coefficient to follow aNormaldistribution is thus equivalent to making
ana priori assumption that both positive and negative values for this coefficient may exist in the
population. In the case where the true distribution yields strictly negative values, but has a mean
close to zero with a long tail into the negative space of numbers, the symmetrical nature of the
Normal distribution can, in approximation, lead to a significant share of positive values, even
though such values are not actuallyrevealedby the data (c.f. Section 5). On the other hand, if
such a possibility really existed, for whatever reasons (including data impurities), theNormal
distribution has the potential to reveal the effect. The issue with theNormaldistribution is thus
the problem of deciding whether a non-zero probability of a positive coefficient isrevealedby
the data or is simply an artefact of the symmetrical nature of the distribution.

A number of alternatives to theNormal distribution have been used in MMNL models, with
variable success. These distributions can be split into two main groups; distributions with fixed
bounds, and distributions with bounds that are estimated during the model fitting exercise.

The best known example of a distribution with a fixed bound is theLognormaldistribution,
which is the most common choice of distribution for coefficients with an explicit sign assump-
tion in MMNL models. While theLognormaldistribution has performed well in some appli-
cations (e.g. Bhat 1998, 2000, Train & Sonnier 2004, Hess & Polak 2004), its applicability is
limited for two prime reasons, its long tail on the unbounded side, and problems with slow
convergence in some cases. The problem with long tails especially is a major disadvantage,
given that it can for example lead to severe problems with overestimated standard deviations;
as an example, Hess & Polak (2004) report that for one coefficient, theLognormaldistribu-
tion produces a mean of5 and a standard deviation of500. Other distributions with a fixed
bound include for example the Gamma, Rayleigh and Exponential distributions. For all these
distributions, a sign-change in the attribute can be used to allow for negative coefficients only.

Aside from the general problems of long tails, distributions with a fixed bound at zero lack
the power to allow for counter-intuitively signed coefficients in the case where such values are
revealedby the data, for example in the case of data impurities or other model misspecification
(e.g. incomplete utility function, as described in Section 3). By ignoring the potential impacts of
such problems, researchers lose information contained in the dataset, and limit the explanatory
power of the model, hence leading to poorer model fit. Although, in the case of such data
impurities or model misspecifications, it is desirable not to explain a significant probability of
a positive travel-time coefficient by the notion that some agents have negative valuations of
travel-time savings, it is similarly bad practise to simply constrain the model to only produce
negative values forβTT , hence ignoring the impact of data or model imperfections.

In this case, the use of distributions bounded on either side, with bounds directly estimated from
the data (i.e. through maximum likelihood estimation), is clearly preferable. With these distri-
butions, there does, thanks to the additional left and right bounding variables, exist no a priori
constraint on the domain. While this allows the distribution to be constrained to either purely
positive or negative domains, it does, unlike in the case of distributions with fixed bounds, also
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allow for domains straddling the zero value, thus allowing data or model specification problems
to manifest themselves. Moreover, the risk of values with thewrongsign being caused by the
shape of the distribution, as with theNormal, largely disappears (problems may still occur in the
case of a significant mass at the endpoints). A simple example of such a distribution is given by
theTriangular, which is a generalisation of theUniformdistribution, allowing for a peak in the
density function. TheTriangular distribution is used rarely with MMNL models, as the linear
segments between its bounds and the mode is seen as a restriction. TheTriangular distribution
however not only avoids the long tails of theNormaldistribution, and the strict bounds of the
Lognormaldistribution, but also allows for asymmetrical shapes.

Recently, very good results have been reported with the use of Johnson’sSB distribution (Train
& Sonnier 2004). TheSB distribution can be obtained as a logit-like transformation of the
Normaldistribution, and withξ ∼ N(µ, σ), a draw from theSB distribution is given by:

c = a + (b− a) · eξ

eξ + 1
, (3)

where the shape of the distribution depends on the choice ofµ andσ, and wherec is bounded
between a and b. TheSB distribution has a major advantage over other bounded distributions in
that it can be used to approximate a number of very different distributions; for example, it can
imitate the shape of theNormalandLognormaldistributions, with bounds on both sides, and
it can also replicate Beta distributions. Furthermore, it can be specified to be symmetrical or
asymmetrical, it can have a tail to the left or the right, its density can take the shape of a fairly
flat plateau with drop-offs on either side, and it can also be specified to be bi-modal (c.f. Train
& Sonnier 2004). While theSB distribution is very flexible, its use leads to a need to estimate
four parameters. Furthermore, while its performance in terms of bounds is generally very good,
its performance in terms of the mean and standard deviation is highly dependent on the shape
of the true distribution, and in some cases, it can lead to significant bias in these measures (c.f
Hess & Axhausen 2004).

A further possibility is the use of an empirical distribution, whose shape reflects the actual
distribution found in the sample population used in the estimation process. Another possible
approach is that of censored distributions; for example, Train & Sonnier (2004) suggest that
a Normal distribution censored below or above zero could be used for attributes that some
respondents are indifferent to, while a strict sign assumption exists for the remainder of the
population. By estimating the bound in such a distribution (i.e. not setting it to zero), modellers
still allow for data impurities to manifest themselves. Finally, with the aim of allowing for a
zero VTTS measure for part of the population, Cirillo & Axhausen (2004) propose the use of
a Normal distribution with a mass at zero. For more extensive discussions of the issue of the
choice of distribution, the reader is referred to Hensher & Greene (2003) and Sørensen (2003).

At this point, it is of interest to briefly discuss what should be done in the case where a model
produces a significant share of positive travel-time coefficients, when appropriate precautions
were taken to guarantee that this is not simply an artefact of the distributional assumptions. It
is difficult to make a general recommendation, as the optimal course of action is highly de-
pendent on the modelling issue at hand. It should be clear that it is not generally possible to
determine whether the estimates are a result of poor data or an insufficient specification of the
utility function. In the absence of improved data or a better understanding of the characteris-
tics of the errors affecting existing data, the scope for addressing data problems is at this point
generally very limited. Modellers are thus largely constrained to trying to improve the quality
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of their utility specification; here, special care should be taken to reduce the impact of correla-
tion in the unobserved part of utility, by including any attributes that are potentially correlated
with travel-time. Finally, if all attempts to obtain strictly negative travel-time coefficients fail,
modellers should acknowledge the potential impact of unobservables on their estimates, and an
appropriate re-labelling of the coefficients is desirable to avoid any confusion.

3 Interpretation of positive coefficients

As alluded to in the previous section, there are several potential reasons why an estimation
process can yield a non-zero probability of a positive travel-time coefficient, aside from the
effects of the shape of the distribution used. In this section, we described some of these reasons,
after first looking at the issue of interpretation of positive travel-time and travel-cost coefficients.

At first glance, positive marginal utilities for cost and time attributes seem inconsistent with
the hypothesis of rationality underlying the theory of random utility maximisation. This is
particularly the case for a positive cost coefficient, where an increase of the utility would occur
when the cost of the associated alternative increases.Assuming that individuals enjoy paying
more for a given good, with all other observed attributes being equal, is inconsistent with
the intuitive understanding of rational economic behaviour. If all correlated factors, such as
prestige effects, were properly accounted for, the marginal utility of increases in cost should be
negative and the use of unbounded distributions for the cost parameter would be inappropriate.
In reality, however, such effects are generally not all explicitly accounted for, and the use of
a distribution with flexible bounds may alert us to their importance in a particular empirical
context.

The case of travel-time coefficients is slightly different. A negative measure for VTTS for a
given individual in effect suggests that this individual would be willing to pay for increases
in travel-time. At first sight, this is counter-intuitive. However, several recent papers discuss
zero (Richardson 2003) or positive (Redmond & Mokhtarian 2001) elasticity with respect to
travel-time. There are interesting statements like: “I’d rather have an hour-plus commute than
a five-minute commute. In the morning, it gives me a chance to work through what I’m go-
ing to do for the day. And it’s my decompression time." (Sipress 1999, cited by Redmond &
Mokhtarian 2001). Also, the conventional interpretation of travel as a derived demand, imply-
ing a disutility for time spent travelling, may be questioned. Mokhtarian & Salomon (2001)
discuss the phenomenon of undirected travel, that is cases in which travel is not a byproduct
of the activity but itself constitutes the activity, and argue that this may explain the evidences
of excess travel (longer than absolutely necessary travel-times) observed even in the context of
mandatory journeys.

Salomon & Mokhtarian (1998) identify two possible reasons for excess travel. The first reason
is the presence of unobserved objective factors. This is the case when the negative marginal
utility of travel-time increases is compensated by the gains in utility resulting from simultane-
ously conducted activities. The problem here is that our existing conceptual frameworks tend to
lead us to think of travel and activity participation as distinct, whereas this is clearly not always
the case. This topic is set to become increasingly important in the analysis of travel patterns
due to the development of mobile data communication tools that massively expand the capacity
for conjoining activities and travel in novel ways. The development of models that are able to
analyse such conjoint activity patterns is thus an important avenue for future research.
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A similar reasoning to that of conjoint activities applies in the case of desirable travel-experience
factors (c.f. Young & Morris 1981). As an example, commuters walking to work may prefer
a slightly longer path through a scenic park to a shorter walk through congested and polluted
streets. Similarly, people may prefer to use their car for going shopping for comfort reasons,
even though the presence of bus priority lanes would make for a quicker bus journey. On a
related issue, the positive impact on utility of thiscomfort factor might outweigh the negative
impact of the higher cost (e.g. parking fees) when compared to public transport. The impact of
such unobserved attributes is related to the second reason for excess travel cited by Salomon &
Mokhtarian (1998); namely the presence of unobserved subjective factors. As an example, the
pleasure of driving an automobile, combined with the social positive perception of having and
using a car, relayed by the marketing of automobiles, may explain the presence of excess travel.
The impacts of such travel-experience factors can be illustrated relatively easily with the help
of suitably generated synthetic data. As such, it can be shown that failing to account properly
for the impact of travel-experience factors can reverse the sign of coefficients in MNL models,
or significantly affect the split between positive and negative coefficients in MMNL models.
Furthermore, the model estimates can falsely indicate the presence of significant random taste
heterogeneity in the case where only fixed coefficients were used in the data generation process
(Hess et al. 2004).

Clearly, it is often not possible to unambiguously quantify the impact of conjoint activities or
travel-experience factors, and there is thus a significant risk of a biased estimate of the travel-
time coefficient. Even in the case where a model produces a negative travel-time coefficient,
it can be assumed that this coefficient is still biased either upwards or downwards by the fail-
ure to include some correlated attributes in the model. However, the issues described above
should be considered especially in the explanation of positive travel-time coefficients (or a pos-
itive probability of such coefficient values), and researchers should strive to include as many
descriptive attributes as possible, to reduce the impact of the correlation between travel-time
and unmeasured variables on the estimation of travel-time coefficients. In fact, it can be seen
that by explicitly accounting for all travel-experience attributes, only the actual cost in time as
a resource would remain; this would be constant across alternatives (e.g. modes or activities)
for a given person at a specific moment in time, yet would most probably vary across individ-
uals and across the time-of-day. As such, obtaining different VTTS for different alternatives
in a mode-choice analysis is in fact a sign that some travel-experience attributes have not been
included in the utility specification; exploring and exploiting such different VTTS measures is
however often one of the main objectives of such studies. Finally, it should be noted that the
issue of quantifying the impact of conjoint activities or travel-experience factors is even more
difficult in the case of forecasting models.

4 Consistency with microeconomic time allocation theory

The conventional approach to estimating the VTTS from discrete choice models involves, as
we have seen, calculating the marginal rate of substitution between travel-time and travel-cost,
at constant utility. Although this is an intuitively plausible approach, it is important to appre-
ciate that the justification for this approach to the valuation of travel-time savings rests not on
plausibility but rather on a substantial body of microeconomic theory that addresses the issue
of how individuals allocate time amongst alternative activities, including travel. It is useful to
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briefly review some key features of these microeconomic foundations, since they provide useful
insights into the issues being considered in this paper.

The topic of time allocation and valuation has been the subject of intense study from a variety
of different perspectives for several decades (see, among others, Becker 1965, Oort 1969, De
Serpa 1971, Evans 1972, Truong & Hensher 1985, Bates 1987 and Jara-Diaz & Guevara 2003).
The papers by Jara-Diaz (2000) and Mackie et al. (2001) provide excellent overviews of the
development of this literature. The currently accepted position is that individuals are assumed
to potentially derive utility both from the consumption of goods and from the time they spend
in different activities (though of course this may vary across individuals). This is represented
by adirect utility function that includes both goods consumed and activity time as arguments.
Individuals are assumed to organise their consumption of goods and their allocation of time
between activities (e.g. work, travel and leisure) such that this direct utility is maximised,
subject to constraints on the total amount of time and wealth available, and technical constraints
on the minimum amount of time that it is necessary to allocate to a particular activity and/or to
the consumption of a good.

The framework in this form was first crystalised in the work of Oort (1969) and, especially, De
Serpa (1971), which serves as a useful point of reference for the discussion. A simple version
of this framework would consider the allocation of time between say work, leisure and travel.
Within this framework, DeSerpa defined three concepts of the value of time. The first is the
resourcevalue of time, which arises because the total amount of time available for allocation
to all activities is fixed by the total time constraint. The resource value of time is equal to
the ratio of the marginal utility of time and the marginal utility of income and is given by the
ratio of the Lagrange multiplier associated with the total time constraint (µ) and the Lagrange
multiplier associated with the income constraint (λ). The second is the value of timeallocatedto
a particular activity, which arises because time (including travel-time) itself is seen as a potential
source of (positive or negative) utility (not simply as a factor contributing to the production of
other goods). This is equal to the rate of substitution between activity time and income in the
direct utility function. The third concept is that of the value ofsaving time in a particular
activity, which arises because of the technical constraints on the minimum amount of time that
must be allocated to particular activities (for example in our case, the minimum time for a trip).
This is equal tok/λ, wherek is the Lagrange multiplier associated with the corresponding
minimum travel-time constraint. It follows from the first order optimality conditions of this
model that (see Jara-Diaz 2000)

µ

λ
=

∂U/∂L

∂U/∂G
= w +

∂U/∂W

∂U/∂G
(4)

and

k

λ
= w +

∂U/∂W

∂U/∂G
− ∂U/∂t

∂U/∂G
(5)

and hence that

k

λ
=

∂U/∂L

∂U/∂G
− ∂U/∂t

∂U/∂G
(6)

whereW is the time allocated to work,L is the time allocated to leisure,G is the consumption
of goods,w is the wage rate,t is the time allocated to travel, andµ, λ andk are Lagrange
multipliers as defined above.
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A number of authors (see Jara-Diaz 2000) have shown that the marginal rate of substitution
between the time and cost parameters in the (conditional indirect) utility of a discrete choice
model is precisely equal to the ratiok/λ. Hence it follows from equation (6) that the VTTS
which we are considering in this paper is, from a microeconomic perspective, composed of two
distinct components; the value associated with the ability to use time released by reductions in
travel-time in other activities (such as work or leisure) and the value associated with the change
in utility derived directly from the travel experience itself. Moreover, we should note that the
Karush-Kuhn-Tucker optimality conditions guarantee thatk ≥ 0, with the equality condition
(i.e., zero VTTS) applying if and only if the individual allocates more than the minimum re-
quired amount of time to the trip. For these circumstances to come about, the individual would
have to derive apositiveutility from time spent travelling at a rate exactly equal toµ/λ. That
is to say, the traveller would be indifferent as between time spent in leisure and time spent trav-
elling. Note further that in this model, there is no circumstance under whichk < 0 could be
observed. Assuming thatλ ≥ 0, this implies no circumstances in which a negative VTTS could
be observed.

We are aware of only one recent attempt (Jara-Diaz & Guevara 2003) to disentangle these two
components of the VTTS, where the empirical results reported suggested that for the sample of
Chilean commuters studied, the VTTS was dominated by the strongly negative utility associated
with the travel-time experience itself.

The preceding discussion has demonstrated thatif one accepts the conventional microeconomic
time allocation framework as providing an adequate basis for evaluating travel-time savings,
then positive and zero values of travel-time savings are theoretically possible, but not negative
ones. Of course, it could be objected that the empirical results reported in the literature re-
garding negative VTTS provide prima facia evidence that the existing time allocation theory is
incorrect or inadequate. However, while there are certainly many respects in which the existing
theory could and should be improved (see for example the discussion in Mackie et al. 2001
and the recent work of Jara-Diaz 2003), we believe that on balance, it is rather more likely
that some of the recent findings of negative VTTS in the literature are econometric artifacts
associated with the complexities of the specification of taste heterogeneity in discrete choice
models.

5 Application

It is sometimes tempting to justify the use of an unbounded distribution (e.g.Normal) for
travel-time coefficients, and an implied positive probability of non-negative coefficient values,
by the better model fit obtained with this distribution. While this is correct from a strictly
mathematical point of view, it should not serve as a proof for the existence of positive travel-
time coefficients and negative VTTS. Indeed, the models should rather be regarded as being
misspecified; although the model allowing for a positive marginal utility of travel-time is math-
ematically superior, the interpretation of the coefficient as the marginal utility of travel-time is
not necessarily correct.

There are two potential reasons why a better model fit can be obtained when using an unbounded
distribution, such as theNormal. One is that its shape in the negative space of numbers might
be better able to approximate the shape of thetrue distribution than is the case for any of the
alternative distributions that have been tried in the estimation. The other potential reason is the
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existence of a positive factor that is strongly correlated with travel-time. In this application, we
illustrate the impact of the distributional assumptions in the approximation to an alternativetrue
distribution; the detailed analysis of the effects of unmeasured factors and conjoint activities is
the topic of ongoing research.

The data used in the present analysis are based on a dataset assembled by the Canadian Rail
Operator VIA Rail in 1989 to predict demand levels for a high-speed rail line in the Toronto-
Montreal corridor. For a detailed description of the dataset, see KPMG Peat Marwick & Kop-
pelman (1990). The sample used in the present analysis contains 4,306 observations, looking
at the choice between air, car and rail. Rather than using the actual choices observed in the
data, it was decided to use the attribute vectors contained in the dataset, in conjunction with a
preset vector of taste parameters, to produce a set of simulated choices. This allows us to test
the performance of various distributional assumptions on a dataset where the “true" values of
the taste coefficients are known.

For the generation of the travel-time coefficients, a Normal distribution truncated at zero was
used, thus allowing for a group of people who are indifferent to changes in travel-time (zero
VTTS). However, rather than using simulation over this distribution in the calculation of the
choice probabilities for the different alternatives and observations, a separate draw from this
distribution was produced for each observation, leading to 4,306 individual-specific travel-time
coefficients. This approach is arguably more consistent with the interpretation of the MMNL
as a model with varying taste coefficients across individuals, as it allows us to calculate dis-
tributional parameters based on the actual distribution of taste coefficients across respondents,
taking the sampling into account. The draws were produced by generating 4,306 independent
draws fromN(−0.0375, 0.0375), and by setting any positive values to zero, leading to a mean
travel-time coefficient of−0.0407, with an associated standard deviation of0.0328, and a mass
at zero of16.5%. Fixed values were used for the alternative specific constants (ASC) for air and
train, as well as for the cost and frequency coefficients (c.f. first part of table 1). For each obser-
vation, we now had a vector of taste coefficients along with a vector of explanatory attributes,
and this information was used to calculate for each individual the MMNL choice probabilities
for the different alternatives contained in that individual’s choice-set. A process based on ran-
dom draws was then used to determine the chosen alternative with the help of the calculated
choice-probabilities.

Using the estimation software BIOGEME (Bierlaire 2003), four different models were esti-
mated on this simulated choice data; one MNL model and three MMNL models. The MNL
model was estimated to illustrate the effect of not allowing for a variation in the marginal utility
of travel-time across coefficients. The three MMNL models estimated on the data made differ-
ent distributional assumptions with regards toβTT ; with one model using aNormaldistribution,
one model using aLognormaldistribution, and one model using anSB distribution. TheSB

distribution was specified with additional bounding parametersa andb, as given in equation
(3), and although botha andb were negative (thus implying negative values only), onlyb was
significantly different from zero, such thata was constrained to zero, with no visible impact on
model fit statistics.

For software reasons, it was at present not possible to estimate a model using thetrue distribu-
tion; aNormalwith a mass at zero. It is in this case important to establish whether the actual
distribution of the taste coefficients across the4, 306 respondents is close to the hypotheticaltrue
distribution, or whether it is biased by the random draws used to generate the individual-specific
taste coefficients. A brief analysis showed that the the impact of sampling bias plays only a
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minor role in this case; the actual sample distribution is virtually indistinguishable from the
theoreticaltrue distribution. Nevertheless, to eliminate the effects of sampling altogether, any
comparative measures calculated in this analysis were based on the4, 306 individual-specific
coefficients actually used, rather than on the theoretical distribution.

The results of the estimation are shown in table 1. The results show that each of the three
MMNL models leads to a very significant improvement in log-likelihood over the MNL model,
by 162.64, 139.87 and160.83 units respectively. This shows the importance of acknowledging
the presence of significant levels of heterogeneity in the marginal utility of travel-time. For
the three MMNL models, table 1 gives the estimated parameters of the distribution ofβTT ,
along with the implied mean and standard deviation of the coefficient. For the models using
the Lognormaldistribution, a sign change was used in the presentation of the results for the
travel-time coefficient, to reflect the negative impact of the associated attribute.

The first observation that can be made from table 1 with regards to the MMNL models is that
the three different distributions lead to quite similar improvements in model fit, when compared
to the much poorer performance of the MNL model. The biggest improvement in model fit is
obtained by the model using theNormal distribution, ahead of the model using theSB distri-
bution. Finally, the lowest log-likelihood of the three MMNL specifications is obtained by the
model using aLognormaldistribution for the travel-time coefficient.

The next step looks at the implied willingness to pay for frequency increases, given by the
negative value of the ratio between the frequency coefficient and the cost coefficient, with the
true value of this ratio being equal to $2.29. The first observation that can be made is that
the MNL model considerably underestimates this ratio, at a value of $1.07; this is a result of
the overestimated cost coefficient in this model. The three MMNL models (in the order used
in table 1) give values for this ratio of $3.22, $2.5 and $3.26 respectively. This shows that
the models based on the use of theNormal distribution and theSB distribution provide point
estimates which overestimate the true ratio.

Even more important differences exist across models in the estimates for the mean and standard
deviation of the implied value of travel-time reductions. For thetrue coefficients, the VTTS
measure was calculated for each of the4, 306 individual travel-time coefficients, and the mean
and standard deviations were calculated on the basis of these values (differing only marginally
from the simple ratio using the mean and standard deviation ofβTT ). The results presented in
table 1 show that the MNL model considerably underestimates the mean VTTS, which is a result
of the overestimated cost coefficient along with the underestimated travel-time coefficient. The
results further show that the point estimates of the three MMNL models overestimate the true
mean and standard deviation. The bias is biggest for the model using alognormallydistributed
coefficient, especially when looking at the implied standard deviation. This is a direct result of
the long tail of theLognormaldistribution. TheSB distribution leads to the lowest overall bias,
especially in the standard deviation. At this point, it should be noted (c.f. table 1) that for the
model using theSB distribution, the parameterµ of theSB-distributed travel-time coefficient
βTT is not statistically significant.

The results presented in table 1 show that while the model using theNormaldistribution leads
to the best model fit, it leads to an apparently poorer performance than the model using the
SB distribution, especially in terms of recovering the true standard deviation of the VTTS.
This suggest that model fit on its own may not always be an appropriate indicator of model
performance, when the aim is to recover the characteristics of economic indicators such as
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Lower 95% Upper 95%
percentile limit percentile limit

Truedistribution 0 191.97
βTT ∼ N(µ, σ) -75.78 293.29

βTT ∼ LN(µ, σ) 6.62 589.89
βTT

b
∼ SB(µ, σ) 0.65 186.95

Table 2: 95% percentile intervals for distribution of value of travel-time savings ($/hour)

VTTS.

In the context of the discussion presented in this paper, it is of interest not just to look at model
fit and at the parameters of the distribution of the VTTS, but to also consider the bounds of the
distribution. While theLognormalandSB distribution are both bounded by zero, theNormal
distribution does, with the estimated parameters given in table 1, lead to a probability of12.41%
of a positive (non-zero) travel-time coefficient (and hence negative VTTS) despite the fact that
no such strictly positive coefficient values were used in the generation of the data. This result
confirms the notion described in Section 2 that the use of theNormal distribution can lead to
false conclusions, indicating a probability of a positive travel-time coefficient when such values
do not exist in the population.

To further illustrate the differences in the tail behaviour of the different distributions, 95% per-
centile bounds for the VTTS distribution were calculated empirically for the four models, each
time making use of a sample of 1,000,000 random draws from the appropriate distribution.
Corresponding bounds for thetrue distribution were calculated from the 4,306 draws actually
used in the data generation. The respective limits are reproduced in table 2. The results of this
analysis show the effect of allowing for positive values ofβTT , with a lower 95% percentile
limit on the VTTS of -$75.78 per hour when using theNormaldistribution. Furthermore, the
Normaldistribution quite considerably overestimates the upper95% percentile. While theLog-
normaldistribution performs well for the lower percentile, it massively overestimates the upper
percentile. On the other hand, a near-perfect approximation to thetrue percentiles is obtained
when using theSB distribution.

In combination with the results from table 1, this shows that theSB distribution leads to the
best performance in recovering thetrue mean, standard deviation and upper and lower95%
percentiles. TheNormaldistribution performs similarly well in terms of the mean, but overes-
timates the standard deviation, and leads to biased lower and upper percentiles. Furthermore, it
falsely indicates a significant probability of negative valuations of travel-time savings. Finally,
theLognormaldistribution massively overestimates the standard deviation and by implication
also the upper95% percentile.

In summary, this brief application has shown that the use of theNormal distribution puts re-
searchers at risk of reaching false conclusions with regards to the potential existence of positive
measures of the marginal utility of travel-time and resulting negative VTTS measures. On the
other hand, theNormaldistribution does, at least in the present application, lead to an accept-
able approximation of the mean and (to a lesser degree) the standard deviation, which suggests
that, if researchers are not interested in the implied behaviour in the tails of the distribution, the
use of theNormalmay be acceptable. TheLognormaldistribution avoids problems with nega-
tive VTTS, but has the disadvantage of a very heavy tail. TheSB distribution on the other hand
seems to avoid all of these problems, although its use admittedly also led to an overestimation
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of the mean VTTS in the present analysis. Overall, these results suggest that while, in some
applications, theNormaldistribution may be used to produce an estimate of the mean and stan-
dard deviation of the VTTS across the population, it should not be used to produce estimates of
the bounds of this distribution, especially so in the case where the mean value ofβTT is close
to zero.

It should be noted that important further insights into the distribution of taste coefficients can
be obtained by conducting a posterior analysis to determine the individual-specific taste co-
efficients conditional on the observed choices. Indeed, even in the case where the original
estimation results indicate a significant probability of positive travel-time coefficients, it is con-
ceivable that, in such an analysis, a positive coefficient would only be associated with a very
low number of respondents (c.f. Sillano & Ortuzar 2004). This further underlines the risk of
misinterpretation with MMNL models, and suggests that a model indicating a non-zero proba-
bility of positive travel-time coefficients should not be used for VTTS calculation or forecasting
without first conducting an appropriate posterior analysis.

6 Conclusions

The objective of this paper was to raise important issues associated with the estimation of VTTS
using MMNL models. They are related to the difficulty of maintaining consistency between
the theoretical assumptions on which the models are based, the actual behaviour of decision-
makers, and the data collection and model specification constraints.

We acknowledge the need for more and more sophisticated models, due to empirical evidence
that not everyone behaves like a “homo-economicus”. The MMNL model significantly con-
tributes to this objective, by accounting for the effects of random taste heterogeneity. However,
our results suggest that researchers should avoid the use of unbounded distributions (like the
Normal) as a means of capturing heterogeneity in estimated time and cost coefficients, as this
approach can lead to conclusions that are not supported by the data used. TheLognormal
distribution, although more consistent with the underlying economic theory, is too strict in im-
posing non-positive coefficients, and has a heavy tail. The former problem can lead to a loss
of information about the impact of data impurities or other specification problems (c.f. Section
2), while the latter problem can lead to seriously biased parameter estimates (c.f. Section 5).
Therefore, we suggest the use of bounded distributions such asTriangular or Sb, where the
bounds are estimated from the data used.

In summary, we note that under the microeconomic theory of time allocation, positive as well as
zero VTTS measures are possible, but negative measures are not. In the presence of estimates
showing positive travel-time coefficients (and hence negative VTTS), care should be taken to
refine the model specification, notably by reducing the impact on the estimation of the travel-
time coefficient of any travel-experience attributes that are strongly correlated with travel-time,
as well as activities that are pursued in the same time-interval as the travelling itself. It these
phenomena cannot be modelled due to the lack of explanatory power in the data, and a model
with a positive time (or cost) coefficient (either as a deterministic coefficient, or as a random
coefficient with a significant probability of being positive) is obtained, then it is critical to
acknowledge the limitations of the model, and to interpret it appropriately. Specifically, the
name of the estimated parameter should be changed in order to emphasise that it captures more
than one specific effect, and its use to compute VTTS, and/or to perform cost-benefit analysis,
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should be avoided. With regards to zero VTTS, we believe that the most appropriate solution
is to explicitly identify the portion of the population where individuals are insensitive to travel-
time savings, in the spirit of the hypothetical distribution proposed by Cirillo & Axhausen
(2004). A latent class approach would be useful here to reconcile the economic theory with the
behavioural evidence. Finally, in the present article, we have focussed solely on the population-
based estimates of the distribution; as mentioned at the end of Section 5, it should be noted
again that individual-based parameters (e.g. by conditioning on choice) may be preferable (c.f.
Train 2003, Sillano & Ortuzar 2004), and further exploration of the potential of this approach
is an important avenue for future research.
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