
Hybrid techniques for pedestrian simulations

Christian Gloor, Dept. of Computer Science, ETH Zürich
Pascal Stucki, Dept. of Computer Science, ETH Zürich
Kai Nagel, Dept. of Computer Science, ETH Zürich

STRC 04 Conference paper

����������������
� �� ��	
������������������������������
Monte Verità / Ascona, March 25-26, 2004

Hybrid techniques for pedestrian simulations

Christian Gloor
Dept. of Computer Science
ETH Zürich
8092 Zürich, Switzerland

Phone: 01-632 04 32
Fax: 01-632 13 74
eMail: chgloor@inf.ethz.ch

Pascal Stucki
Dept. of Computer Science
ETH Zürich
8092 Zürich, Switzerland

eMail: stuckip@student.ethz.ch

Kai Nagel
Dept. of Computer Science
ETH Zürich
8092 Zürich, Switzerland

Phone: 01-632 54 27
Fax: 01-632 13 74
eMail: nagel@inf.ethz.ch

Abstract

There exist multiple models for pedestrian simulations. Cell based models are easy to understand,
fast, but consume a lot of memory once the scenario becomes larger. In models based on con-
tinuous space, which need almost no memory at all, however, the CPU becomes the bottleneck
soon.

In our project “Planning with Virtual Alpine Landscapes and Autonomous Agents”, we simulate
an area of 150 square kilometers, with more than thousand agents for one week. Every agent is
able to move freely, adapt to the environment and make decisions during run time. This decisions
are based on perception and communication with other agents.

This requires a simulation model that is fast and still fits into main memory of a typical worksta-
tion. We combined the advantages of both approaches into a hybrid model. This model exploits
some of the special properties of the area.

• Hikers tend to walk on trails. It is possible to fit a coordinate system on a graph of these
trails. Using this coordinate system, a continuous simulation is possible.

• Obstacles like houses, trees, or rivers influence the route choice of hikers. We developed
an algorithm which adds additional nodes to the exiting graph for each obstacle. The hiker
is not only able to walk around the obstacles. but also to take the path length into account
during trip planning.

• Paths in the Alps are not like streets, their walkability differs a lot. The speed of the hikers
is influenced by the quality of the trail. We added a grid known from cell based simulations,
which allows us to control the speed of the hikers. Parts of this grid are dynamically loaded
as needed.

This paper will present an overview over this hybrid system, and some performance results.

Keywords

Pedestrian Dynamics – Multi Agent Simulation – Parallel Computing – 4th Swiss Transport Re-
search Conference – STRC 04 – Monte Verità

Swiss Transport Research Conference

March 25–26, 2004

1. Introduction

The project “Planning with Virtual Alpine Landscapes and Autonomous Agents” (ALPSIM www
page, accessed 2004) uses a multi-agent simulation to model the activities of tourists (primarily
hikers). The goal is to have these agents populate a virtual world, where they are able to eval-
uate different development scenarios. Such scenarios include the question of re-forestation of
meadows, or the summer use of chair lifts and the like. Left to themselves, many areas in the
Swiss Alps would be covered by dense forest; it seems however that most hikers would prefer a
more variable landscape. Many people, in particular families with children or people with health
limitations, like mechanical aids to bring them nearer to the top of mountains.

The aim of this project is to implement a multi-agent simulation of tourists hiking in the Alps
in order to investigate the achievable level of realism. At the same time, the project is used to
explore general computational implementations of mobility simulations.

Such a simulation generically consists of two components: The physical mobility simulation,
which moves the hikers through the system and computes their interactions; and the strategy
generation module(s), which compute(s) strategic decisions of the agents such as destination or
route choice. For the simulation, care needs to be taken that the agents explicitly react to visual
stimuli; for example, they cannot look through a mountain.

Our approach is adapted from one used in traffic microsimulations. A synthetic population of
tourists is created that reflect current (and/or projected) visitor demographics. These tourists are
given goals and expectations that reflect existing literature, on-site studies, and, in some cases
where sufficient data is not available, are based on experts’ estimates. These expectations are
individual, meaning that each agent could potentially be given different goals and expectations.

These agents are given “plans”, and they are introduced into the simulation with no “knowledge”
of the the environment. The agents execute their plans, receiving feedback from the environment
as they move throughout the landscape. At the end of each run, the agents’ actions are compared
to their expectations. If the results of a particular plan do not meet their expectations, on subse-
quent runs the agents try different alternatives, learning both from their own direct experience,
and, depending on the learning model used, from the experiences of other agents in the system.

A “plan” can refer to an arbitrary period, such as a day or a complete vacation period. As a first
approximation, a plan is a completely specified “control program” for the agent. It is, however,
also possible to change parts of the plan during the run, or to have incomplete plans, which are
completed as the system goes.

After numerous runs, the goal is to have a system that, in the case of a status quo scenario,
reflects observed patterns in the real world. In this case, this could, for example, be the observed
distribution of hikers across the study site over time.

An introduction to possible techniques for pedestrian simulation can be found in (Schreckenberg
and Sharma, 2001; Galea, 2003). For microscopic simulations, there are essentially two tech-
niques: methods based on coupled differential equations, and cellular automata (CA) models. In

1

Swiss Transport Research Conference

March 25–26, 2004

Figure 1: Path-oriented coordinate system for the computation of the desired velocity and the
path forces. The light arrows show the desired velocity, which drives the agent forward along the
path. The dark arrows show the path force, which pull the agent toward the middle of the path.

our situation, it is important that agents can move in arbitrary directions without artifacts caused
by the modeling technique, which essentially rules out CA techniques. A generic coupled differ-
ential equation model for pedestrian movement is the social force model (Helbing et al., 2000)

mi

dvi

dt
= mi

v
0

i − vi

τi

+
∑

j 6=i

fij +
∑

W

fiW (1)

where mi is the mass of the pedestrian and vi its velocity. v
0

i is its desired velocity; in conse-
quence, the first term on the RHS models exponential approach to that desired velocity, with a
time constant τi. The second term on the RHS models pedestrian interaction, and the third models
interaction of the pedestrian with the environment.

The specific mathematical form of the interaction term does not seem to be critical for our appli-
cations as long as it decays fast enough. Fast decay is important in order to cut off the interaction
at relatively short distances. This is important for efficient computing, but it is also plausible
with respect to the real world: Other pedestrians at, say, a distance of several hundred meters
will not affect a pedestrian, even if those other pedestrians are at a very high density. We use an
exponential force decay of

fij = exp

(

|ri − rj|

Bp

)

ri − rj

|ri − rj|
, (2)

which seems to work well in practice. fij is the force contribution of agent j to agent i; ri is
the position of agent i. Alternative more sophisticated formations are described by Helbing et al.
(2000). For the environmental forces, fiW , the same mathematical form as for the pedestrian-
pedestrian interaction is used.

We introduced (Gloor et al., 2003b) a model that uses only sparse information which fits into

2

Swiss Transport Research Conference

March 25–26, 2004

computer memory, runs efficiently on our scenarios, and has agents follow paths without major
artifacts. Our model uses a path-oriented coordinate system (see Fig. 1) for the computation of
the desired velocity. This model also uses a so-called path-force, which pulls the agents back
on the path when he moves away from its center (e.g. due to interaction with other agents or
obstacles).

Using these equations, a pedestrian without an own intention can be modelled. Simple intentions,
like walking into a certain direction, can be described by simple expressions for v0

i . In a more
complex scenario, however, pedestrians tend to follow a path or avoid obstacles that where pre-
dictable. It is even possible to think of an simulation of pedestrian that moves inside a city or
inside a building.

Usually the curent position ri and the eventual destination of the pedestrian is known. The v0

i is
given by the optimal trajectory.

In this paper, we look at two completely different methods to calculate v0

i . The resulting trajectory,
however, is not always the one the pedestrian will walk on eventually, since the other term of the
RHS of equation (1) have an influence as well. This paper is concluded by a look at an example
simulation, an evacuation of Zürich Main Station.

2. Potential Field Model

The first approach looked at in this paper is based on the utility maximization model by Hoogen-
doorn et al. (2002). For this model, a potential field is generated for the simulated area, which
allows the pedestrians to find their destinations by walking towards the minimal potential.

Instead of using partial differential equations, the potential field can be created by calculationg
the distance to a given destination for each point of the walking area. If the influence of possible
obstacles is not neglected, a potential field as shown in Figure 8 emerges. Note that for each
possible destination a separate potential fiels needs to be created. However, this field can be used
for all agents heading to that destination, regardless of their starting position.

The potential fields are calculated before the actual simulation is started. For this, the simulated
area has to be divided into cells, each of them describing the average value all positions covered
by this cell. The actual values for each cell are calculated using a simple flooding algorithm,
starting at the destination. This algorithm only updates cells that are not blocked by an obstacle.
The results generated by this algorithm are close but not exactly similar to the ones generated by
the utility maximization model.

Stucki (2003) descibes three different ways to implement this flooding algorithm. The most
promising implementation, using a priority queue, is about 2000 times faster than an unoptimized,
recursive implementation. An area of 50×50 cells is calculated in approximately 1

10
seconds.

To deduce an agents’ desired velocity, or direction, from this potential field is not as easy as
expected. The first idea is to just walk into the direction of the neighbour cell with has a lower

3

Swiss Transport Research Conference

March 25–26, 2004

Figure 2: Different algorithms to calculate the desired velocity (walking direction) from a given
potential field.

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

actual cell

checked cell

wall
calculated walking direction
direction to minimal neighbor cell
walking route

Check only neighbor cells Check neighbor cells (radius=2)

101416 11121315

11

12

11.416.4

15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

Check cells until wall reached

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

Follow minimal directions

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

101416 11121315

11

12

11.416.4

16.8 15.8

15.4 14.4

14.8 13.8

13.4 12.4

12.8 12.4

99.49.81111.4 10.210.6

16.8

14.4

15.4

16.8

4

Swiss Transport Research Conference

March 25–26, 2004

Figure 3: A potential field generated for one destination in the center of the formation (left) and
for two destinations (right). A lighter color means a lower potential (close to the center, the
potential is lowest). Some example walking directions derived from this potential field are shown
in blue.

potential, and which is therefore closer to the destination. Using this method, however, yields in
a zigzaging path, because the possible walking directions are limited by the number of neibour
cells, which is eight (1st column of Figure 2).

However, even by using the cell-based direction information, the agents are able to walk in any
arbitrary direction. The pedestian dynamics are still computed according equation (1), but we use
a v0

i that is deduced from the precomputed potential field.

One possibility to increase the number of possible walking directions is to increase the number
of cells looked at. If cells not just one but two steps away are considered as well, 16 directions
are possible (2nd column of Figure 2).

An even more realistic result can be achieved if the algorithm continues checking cells in one
direction until it reaches a wall. Then, it follows the minimal potential until it reaches the corner
of that wall. This corner is in the direction the agent should walk (3rd column of Figure 2).
Alternatively, one can follow the minimal potential until the cell can no longer be reached directly
from the starting cell (4th column of Figure 2). This last two algorithms require knowledge of the
position of objects in the simulated area.

It is possible to solve the problem of finding the optimal walking direction using the correct
distances to the destination instead of using Manhattan distances (Nishinari et al., 2001). This
basically yields in a graph connecting all corners of every object. The pedestrians appear to walk

5

Swiss Transport Research Conference

March 25–26, 2004

along the edges.

3. Graph Model

For the ALPSIM project, we use a network of hiking paths in the Alps. This network has a
resolution of approximately 2m, which is accurate enough for path through forests or meadows.
However, inside villages or close to obstacles, a resolution of 25cm is needed to model a realistic
behaviour of the pedestrians.

One possibility would be to switch to the just presented potential field model where needed. Since
only v0

i is calculated by the potential field, all other aspects of the pedestrian dynamics, as forces
between pedestrians or from obstacles, would remain the same.

However, a more intuitive solution is to keep the existing graph, but to add more details where
needed. We were looking for a method that generated a graph around a given set of obstacles.
This path can be merged with the global hiking path graph eventually.

In a first step, we have to decide where the nodes of the new graph should be. There should be
enough nodes that a agent is able to circumvent obstacles on a naturally looking path, but not too
much. Each additional node has to be considered in route choices and adds to path lenghts. Paths,
which are list of nodes, are stored in agents or transmitted over the network.

It is not that easy to find a simple yet realistic looking position of a node. The simplest solution
would be to add a node to each corner of all objects (see Figure 4a). However, people tend to
keep a certain distance to objects. Weidmann (1993) outlines that pedestrians keep an distance of
0.25 m (inside buildings) and 0.45 m (outdoors) to walls, even more to obstacles like fences. The
paths would be to close to the objects. This would not be a problem, since agents as well keep a
distance to obstacles due to environmental forces, but it would be better to avoid the problem in
the graph directly.

The pedestrians will observe a distance if the nodes have a certain distance to the object corners
as well. We decided to use multiple nodes for each corner of an object. Each of them in a distance
of 0.25 m to the object corner (see Figure 4c). It does not matter in which direction the pedestrian
approaches the corner, the distance to the corner is more or less equal. In order to reduce the
numbers of nodes, we run an algorithm that eliminates nodes lying inside an object.

Based on these nodes an intial graph is constructed. At first, every node is connected to each
other node, and each such edge has an weight of the distance between the nodes. We use then an
algorithm to reduce the edges generated by fully connecting all the nodes geneated. We run an
visibility check algorithm, known from e.g. the area of 3D computer graphics, to determine all
the edges that intersect with obstacles. These edges are deleted.

In order to find the shortest path through this network, the Dijkstra (1959) shortest path algorithm
is used. The implementation of this algoritm is time dependant. For traffic simulations, time
dependant routes are primarily because of traffic jams, which is a feature implied by the agents

6

Swiss Transport Research Conference

March 25–26, 2004

Figure 4: a) The simplest solution to place nodes would be to add a node to each corner of all
objects. b) since people tend to keep a certain distance to objects, the nodes should be placed at
a distance of 25cm to the corner of obstacles. c) is is, however, easier to place 4 or more nodes
close to each corner and remove the ones inside an object in a later step.

a)

b)

c)

7

Swiss Transport Research Conference

March 25–26, 2004

themselfs. For pedestrian simulations, where the density is not too high (e.g. outdoors), time
dependancy in route algorithms can be used to model external influences (e.g. weather, closed
chairlifts). Note that the cost function used here is not only dependant of the travel time, but is
influenced by other factors as well (e.g. steepness of the path, how nice the view is, diversity of
environment, see Gloor et al., 2003a).

4. Precomputed Forces

The two presented models have in common that they both use precomputed force fields, stored in
a cell-based grid. Different is the way they calculate the desired velocity v0

i of a pedestrian. Table
1 gives an overview of the forces used.

Table 1: A comparison of the way the forces that influence the movement of an agent are com-
puted in the two models.

Force Description Potential Model Graph Model

Desired velocity The force which pulls
the agents along the
path

Pre-computed During runtime

Social forces Influence of the other
agents

During runtime During runtime

Path force The force which pulls
the agents back on the
path

N/A During runtime

Walkability How fast an agent can
walk in a given posi-
tion

Pre-computed Pre-computed

Note that there is no path force in the potential model. This force is used in the graph model
to keep the pedestrians near the middle of an walking path. In the potential model, however, the
pedestrians figure out where to walk by themselves, provided that walking on a path is faster.

To encode this information, a further grid is needed. It stores how fast a pedestrian is able to
walk in a given location. The value of the walkability parameter w(ri) is between 0 (obstacle,
no walking possible) and 1 (flat street). This actually reduces the desired velocity from v0

i to
w(ri)v

0

i . In the Alpsim project, walkability can also be used to model swamps, snow fields, or
dense forests, where walking is in principle possible, but cumbersome.

This parameter is used by both models. The graph model uses it to slow down the pedestrians
that are not exactly on the path. A reason to leave the path could be because of other pedestrians

8

Swiss Transport Research Conference

March 25–26, 2004

Figure 5: The walkability parameter can be used to prevent agents from walking too close to an
obstacle. Walking directions without any corrections (left), with adapted potential field (middle)
and with adapted walking direction algorithm (right)

025

12.45.4

3.4

4.4

5.4

6

5

4

3

2

6.4

6.4

7.8

7.48.4

9.8

9.410.4

10.8

10.8

12.2

5.8

6.8

7.8

13.2 13.8

13.8

14.8

10.8

11.8

12.8

15.8

15.2

16.2

16.6

18.6

17.2 19.6

potential is reached
stops as cell with increased

025

12.45.4

3.4

4.4

5.4

6

5

4

3

2

6.4

6.4

7.8

7.48.4

9.8

9.410.4

10.8

10.8

12.2

5.8

6.8

7.8

13.2 13.8

13.8

14.8

10.8

11.8

12.8

15.8

15.2

16.2

16.6

18.6

17.2 19.6

is interrupted
stops as visibility

0

1

6

5

4

3

6.4

1

2

2

2.4 1.4

2.4

3.4

4.4

5.45.8

2.8

3.8

4.8

6.8

5.2

6.2

7.2

6.2

7.2

8.2

9.2

6.2

6.6

6.6

7.6

8.6

9.6

7.6

7.6

7.6

7.2

8

8

9

10

stops as corner is reached

Potential Field Cell

Cell with increased Potential (+2)

Cell with increased Potential (+1)

Uncorrected Adapted Potential Adapted Potential and Directions

0 Potential

Wall

Calculation Path

Walking direction

Destination

which apply the force defined in equation (2). It is also possible to assign a lower walkability
to paths of lesser quality, e.g. narrow hiking paths. This does not affect the route choice of the
pedestrians directly. However, the modules of the strategical layer (Gloor et al., 2003a) notice
this delay eventually and will take this into account for the next iteration.

In the potential model, the walkability is used directly by the algorithm that calculates the optimal
walking direction for an agent (Figure 5). This yields in trajectories that circumvent regions with
lower walkability, if the detour is small enough. As a side effect, the walkability can also be
abused to prevent the agents from walking too close to a wall or an obstacle. This is done by
setting the walkability parameter to a lower values where an agent should not walk.

These forces are relatively expensive to calculate, since one needs to enumerate through all pos-
sible objects that could influence a given location. Yet, since those forces do not depend on time,
they can be pre-computed before the simulation starts. In order for this to be successful, some
coarse-graining of space is necessary. For this, we use cells of size 25cm × 25cm, and assume
that all time-independent forces are constant inside a cell. The resulting force field (Fig. 6) be-
comes non-continuous in space, but this is not a problem in practice since this only influences the
acceleration of pedestrians. That is, the acceleration contribution from the environmental forces
can jump from one time step to the next, but since time is not continuous, this is not noticeable.

Pre-computing the values for all cells in a hiking region of, say, 50km × 50km, does not fit into
regular computer memory. To avoid this problem, we implemented two methods: lazy initializa-
tion, and disk caching. By lazy initialization, we mean that the values are computed only when
an agent really needs them, also knows as Virtual Proxy Pattern (Gamma et al., 2001, pages 207–
217).

9

Swiss Transport Research Conference

March 25–26, 2004

Figure 6: The hybrid simulation technique. The forces (arrows) are valid for the whole cell; a
pedestrian’s trajectory (dots) can follow arbitrary positions.

In practice, the simulation area is divided into blocks of size 200m× 200m. Every time an agent
enters one of these blocks, the values for all cells inside that block are computed. Since hiking
paths cross only a small fraction of those blocks, the cell values for many blocks in our hiking
area will never be calculated.

In addition, the cell values, once computed, are stored on disk (disk caching). Every time when
an agent encounters a block for which the cell values are not in memory, the simulation first
checks if they are maybe on disk. Computation of the cell values is only started when those
values are not found on disk. In consequence, a simulation started for the first time will run more
slowly, because the disk cache is not yet filled.

If the simulation runs out of memory, then blocks which are no longer needed, i.e. which have
not been crossed by an agent for a long time, are unloaded from memory. If they are needed
again, they are just re-loaded from disk. This corresponds to the Least Recently Used (LRU) Page
Replacement Algorithm described by Tanenbaum (2001, pages 218–222).

An additional advantage of the blocks, well known from molecular dynamics simulations, is that
one can use them to cut off the short-range interaction between the pedestrians. Agents which are
not in the same or one of the eight adjacent blocks are ignored. This implies that there needs to
be some data structure where agents are registered to the block. Agents that move from one block
to another need to unregister in the first block and register in the next one. In this way, an agent
searching for its neighbors only needs to go through the registered agents in the relevant blocks.
This brings the computation complexity from O(N 2) down to O(NM), where N is the number of
all agents in the simulation, and M is the number of agents in a single block. M is a reasonably

10

Swiss Transport Research Conference

March 25–26, 2004

small number when compared to the number N of all agents in a real-world scenario.

5. Simulation of Zürich Main Station

As a real-world scenario for testing our models, we chose a simulation of an evacuation of Zürich
Main Station. We simulated an area of 700m × 200m with more than 3000 obstacles. Agents
were placed randomly within the simulated area (neighter inside buildings, nor on the railways).
We considered eight different exit locations, every pedestrian chooses the one closest to him.
Note that we did just one iteration, which means that congestion at a certain exit can occur and
is not avoided by the pedestrians. It would be possible, however, to run multiple iterations of the
scenario to enable the agents lo learn from such a situation (see e.g. Gloor et al., 2003a; Raney
and Nagel, 2004).

To handle the different levels of the Main Station, we had to introduce the concept of stairs and
elevators. Different levels were placed beside each other. Elevators were implemented like tele-
portation (with a time delay of some seconds), stairs are divided into two halves, each simulated
in a level, with teleportation in the middle. However, forces between pedestrian on different sides
of this boundary still contribute to pedestrian movements.

Since Zürich Mainstation has more than one exit, we had reflect this in our models. For the
potential field model, this is simple: starting the flooding algorithm from all exits simultaneously
is sufficient. All the different exits are stored in the same precomputed map, since for every given
point in the simulated area, there is exactly one closest exit. However, for the graph model, this
was more complicated: we had to generate multiple graphs, one for each possible exit.

For a pedestrian simulation, two measurements are inportant: i) how realistic the results are, and
ii) how fast the computation is.

The size of the cells that store the potential field does affect the time pre-computation takes. For
the Zürich Main Station scenario, we measured on a 700MHz Pentium III equipped with 256
Mbytes of RAM:

Table 2: Influence of the cell size to the time required for pre-computing the potential field

Cell Size (m) Cell Checks Calculation Time (s)

0.25 1’325’459 1554
0.5 325’331 386
1 78’324 102

Before the potential of a new cell can be calculated, a visibility check has to be performed to
ensure that the cell is accessible (visible) from the neighbour cell. As the check has to iterate

11

Swiss Transport Research Conference

March 25–26, 2004

Figure 7: An evacuation of Zürich Main Station using the potential field model. The pedestrians
hurry to the closest exit avaliable. This is a capture of the first of multiple iterations, which means
that congestion at a certain exit can occur and is not avoided by the pedestrians

12

Swiss Transport Research Conference

March 25–26, 2004

Figure 8: Potential field for Zürich Main Station, generated for the 8 potential exits. This potential
field has to be generated each time the destination changes.

Figure 9: Spanning tree for Zürich Main Station, generated for the 8 potential exits. This span-
ning tree has to be generated each time the destination changes, but the underlying nodes do not
change.

13

Swiss Transport Research Conference

March 25–26, 2004

over all obstacles in the simulated area, the calculation time increases linearly with the number of
obstacles.

Table 3: Influence of the number of obstacles in the simulated area

#Objects Calculation Time (s)

100 65
500 219
1000 420
1500 643
2000 866

The graph models requires that the graph is pre-computed. This takes 175 minutes for the full
scenario, containing all of th 300 obstacles. If small obstacles like pillars or benches are removed
for the graph generation, the time can be reduced to 35 minutes. Small objects hardly influence the
path of a pedestrian chooses. However, the pedestrians still do not walk through these obstacles,
since the 3rd term of the RHS of equation (1) still pushes them away from obstacles.

An comparison of the presented models is shown in Table 4. The Zürich Main Station scenario
was run for 10, 100 and 500 agents using each model. Note that in this numbers the time used to
pre-calculate the potential field and to generate the graph is not included.

For the graph model (column d) and e)), the time to simulate the first steps takes longer than the
average because the agents have to find an optimal node on the graph to walk to their destination.

The potential field model needs about one minute to load the pre-calculated cells into memory.

References

ALPSIM www page (accessed 2004) www.sim.inf.ethz.ch/projects/alpsim/. Planning with Vir-
tual Alpine Landscapes and Autonomous Agents.

Dijkstra, E. (1959) A note on two problems in connexion with graphs, Numerische Mathematik
1, (1) 269 – 271.

Galea, E. R. (Ed.) (2003) Pedestrian and Evacation Dynamics 2003, Proceedings of the 2nd
international conference, CMS Press, University of Greenwich.

Gamma, E., R. Helm, R. Johnson and J. Vlissides (2001) Design Pattern: Elements of Reusable
Object-Oriented Software, Addison-Wesley professional computing series, Addison-Wesley.

14

Swiss Transport Research Conference

March 25–26, 2004

Gloor, C., D. Cavens, E. Lange, K. Nagel and W. Schmid (2003a) A pedestrian simulation for
very large scale applications, in A. Koch and P. Mandl (Eds.), Multi-Agenten-Systeme in der
Geographie, no. 23 in Klagenfurter Geographische Schriften, 167–188.

Gloor, C., L. Mauron and K. Nagel (2003b) A pedestrian simulation for hiking in the alps, in Pro-
ceedings of Swiss Transport Research Conference (STRC), Monte Verita, CH. See www.strc.ch.

Helbing, D., I. Farkas and T. Vicsek (2000) Simulating dynamical features of escape panic, Na-
ture, (407) 487–490.

Hoogendoorn, S., P. Bovy and W. Daamen (2002) Microscopic pedestrian wayfinding and dy-
namic modelling, in M. Schreckenberg and S. Sharma (Eds.), Pedestrian and Evacuation Dy-
namics, 123–154.

Nishinari, K., A. Kirchner, A. Nazami and A. Schadschneider (2001) Extendes floor field CA
model for evacuation dynamics, in Special Issue on Cellular Automata of IEICE Transactions
on Information and Systems, vol. E84-D, January 2001.

Raney, B. and K. Nagel (2004) An improved framework for large-scale multi-agent simulations
of travel behavior, in Proceedings of Swiss Transport Research Conference (STRC), Monte
Verita, CH. See www.strc.ch.

Schreckenberg, M. and S. D. Sharma (Eds.) (2001) Pedestrian and Evacation Dynamics,
Springer.

Stucki, P. (2003) Obstacles in pedestrian simulations, Diploma thesis, Swiss Federal Institute of
Technology ETH.

Tanenbaum, A. S. (2001) Modern Operating Systems, Prentice-Hall, Inc., second, international
edn.

Weidmann, U. (1993) Transporttechnik der Fussgänger, vol. 90 of Schriftenreihe des IVT, Insti-
tute for Transport Planning and Systems ETH Zürich, 2 edn. In German.

15

Swiss Transport Research Conference

March 25–26, 2004

Table 4: Time to simulate an evacuation of Zürich Main Station using a) potential field model
with minimal neighbor approach, b) potential field with minimal distances approach, c) potential
field with precalculated walking directions, d) graph model ignoring small obstacles and e) graph
model. Further the average/maximum time and distance needed to leave the station are shown.
This shows that the compared models generate similar results.

a) b) c) d) e)

10 walking agents:

Total Time 81s 76s 81s 38s 84s
Time First Round <1s <1s <1s 16s 66s
Time per Round <1s <1s <1s <1s <1s
Walking Time 72s 116s 57s 88.6s 80s
Max. Walking Time 132s 203s 154s 199s 199s
Walked Distance 75m 98m 91m 99m 96m
Maximal Walking Distance 132m 213m 240m 237m 227m

100 walking agents:

Total Time 139s 75s 252s 290s 525s
Time First Round <1s <1s 1s 131s 341s
Time per Round <1s <1s 1s <1s 1s
Walking Time 67.1s 50.9s 55s 70.6s 74s
Max. Walking Time 239s 180s 230s 182s 182s
Walked Distance 73m 51m 66m 80m 77m
Maximal Walking Distance 239m 217m 214m 227m 229m

500 walking agents:

Total Time 282s 240s 446s 1726s 4617s
Time First Round 2s 1s 4s 664s 1459s
Time per Round 2s 1s 4s 12s 12s
Walking Time 60.3s 67s 53s 69.5s 76.6s
Max. Walking Time 234s 189s 195s 262s 271s
Walked Distance 64m 79.4m 92m 79m 78m
Maximal Walking Distance 236m 245m 189m 247m 233m

16

