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Abstract
In a multi-agent transportation simulation, travelers are represented as individual “agents” who
make independent decisions about their actions. We are implementing a large-scale version of
such a simulation in order to model the traveler behavior in all of Switzerland.
Our simulation is composed of separate modules. Each module models a different set of decisions
made by an agent and calculates those decisions independently for each agent. The modules we
use are listed below.
The “activities generator” module generates a complete 24-hour day-plan for a given agent, in-
cluding each major activity (sleep, eat, work, shop, drink beer) the agent wishes to accomplish
during the day, their times, and their locations. Activity times may be flexible, and can be speci-
fied by some combination of starting time, duration, and/or ending time.
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The “route planner” module determines the mode of transportation, as well as the actual route
plan taken, for each leg of the agent’s chosen activity plan. Each leg simply connects one activity
to another. At present our router generates routes only for automobile travel.
The “micro-simulation” module executes all the agents’ plans simultaneously and in consequence
computes the interaction between different travelers leading, e.g. to congestion. The micro-
simulation provides data to the other modules about what happened during the simulated day,
including the travel-time as well as the time and location of significant events to happen to agents
while they are being simulated (such as arriving at their first activity destination, etc.).
There is an interdependence between the above modules. For example, plans depend on conges-
tion (via travel-times) but congestion is a result of the execution of plans. The “feedback and
learning” module resolves the interdependence via an iterative method, where an initial plans set
is slowly adapted until it is consistent with the resulting travel conditions, or until some other
stopping criterion is fulfilled. In this technique, each iteration of the simulation can been seen
as a separate “day” in the life of the agents. Each day the agents’ view of the traffic network is
updated, and they learn about which plans work well and which do not.
We implement the feedback mechanism with a so-called “agent database” that allows agents to
have a “memory” of the plans they have used during previous days in the current iteration se-
quence. The agents also use the events data from the micro-simulation to determine performance
“scores” for each plan. Each day of the iteration, every agent chooses a plan from its memory
based on their scores, or decides to generate a brand-new plan (either a new set of route plans for
a given activity-set or a new activity-set and associated route plans) based on information from
the previous iteration.
This paper goes beyond what we have done in the past by investigating for the first time the ef-
fects of time choice inside the feedback loop. That is, travel time results are fed back to a time
allocation module, which “mutates” existing activity schedules, allowing the learning mechanism
of the agents to choose the plans that work best. We present preliminary results from using this
module with the rest of the framework applied to the Switzerland morning rush-hour scenario –
with special interests into the Zürich area, which contains approximately 260’000 agents.
See also Raney and Nagel (2004).

Keywords

traffic simulation– transportation planning– route planning– learning– multi-agent simulation–
4th Swiss Transport Research Conference – STRC 04 – Monte Verità
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1. Introduction

There are different accepted computational models to forecast traffic. The one which is described
in this paper is “multi-agent simulation”. The main characteristic of this model leads to the fact
that each entity is described as an individual object or agent, which makes independent decisions
about its actions. Typical entities are travelers, traffic light, ITS-entities like variable message
signs, and so on...
This multi-agent concept consists of basicially two parts: (i) the simulation of the “physical”
properties of the system, and (ii) the generation of the agents’ strategies. The simulation is the
place where the agents interact with each other – car drivers produce congestion, traffic lights
change their intervals dependent on the amount of traffic, pedestrians wait for the next train to
catch, and so on. The strategies of agents are made by the experiences of the simulation – car
drivers try other routes to avoid congestion, pedestrians need to leave earlier to catch the train,
traffic lights favor the main streets to maximize the troughput of an intersection, etc.
We are implementing such a multi-agent simulation for the whole Switzerland – but specifically
concentrating on the Zürich area. About 260’000 agents are simulated who cross this region. The
challenges with such an implementation are many: availability and quality of input data, com-
putational implementation and computational performance, conceptual understanding of agent
learning, and validation. This paper reports first results which are essentially based on typical
transportation planning data: it uses standard origin-destination matrices; it uses the transporta-
tion planning network from the corresponding Swiss federal planning authority; and it performs
route assignment based on these input data. The main difference to typical planning tools, such
as EMME/2 (http://www.inro.ca) or VISUM (http://www.ptv.de), is that our implementation is
indeed completely agent-based; that is, the individuality of each traveler is fully maintained
throughout the process. Furthermore, compared to last years results (Raney et al., 2003), we
show a simple but quite effective way to calculate the time window when trips occur during the
day. With this it is no longer nessesary to process time dependent O-D-Matrices. In other words,
it is possible for the simulation itself to predict when agents executes their trips.

This paper will continue with an outline of the general simulation structure (Sec. 2), where we
also describe the modules we will use in more detail (Sec. 2.1). Next we introduce the network
and the scenario (Sec. 3). Some computational issues are pointed out in section 5. The results
(Sec. 6) of the different setups of the scenario are compared with counts data (Sec. 4) of this
region. The paper is concluded by a conclusion (Sec. 7), future work (Sec. 8) and a summary
(Sec. 9).

2. Simulation Structure

To constuct a multi-agent simulation we need to split up different aspects into modules which try
to fulfill those aspects. The goal is to create a complete plan in a certain time period – usually a
typical workday. I.e. this dayplan could look like this:
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• staying at home till 07:38

• take the car to drive to work by using the following route (encoded in a street network):
321 - 2 - 34 - 65 - 21 - 34

• arriving at work at 07:58

• working for 4 hours till 12:00

• taking the bus nr 34 to go to lunch using the following stations (encoded in a public transport
network): station#4 - station#16 - station#14

• arriving at station#14 at 12:14

• walking for 7 minutes to the restaurant using the following route (encoded in a pedestrian
network): 101 - 103 - 23 - 54

• arriving ... and so on...

To generate such a plan, we need to cut it into “elemental pieces”, so that we can create each with
a seperate module. The peaces are defined as the following:

• Population generation. Demographic data is disaggregated so that one obtains individual
households and individual household members, with certain characteristics, such as a street
address, car ownership, or household income (Beckman et al., 1996). – This module is not
used for our current investigations but will be used in the future.

• Activities: They describe what an agent actually wants to do during the day and where these
activities should be processed. It is also useful to define “staying at home” and “being at
work” as the two primary activities, since typically a citizen first decides where to live
and where to work before he plans other activities during his day like “having lunch”,
“shopping”, “leisure”, and so on. Please notice, that at the moment the activities and their
locations will be treated as the same.

• Pattern: It describes in which order the choosen Activities should be executed. Typically,
the pattern starts and ends at home.

• Arrival, Duration, Departure Time: Activities have two or all three attributes defined.
Activities cannot overlap in time.

• Trips: Trips connect the activitiy chain. They define which route and which mode an agent
chooses to get from one activity to the next.

For each of the items above described, we are now able to implement a seperate module, which
produces the necessary inforamtion.
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First it is to define where the agent lives and where it works. The primary location1 choice
module generates these information using i.e. microcensus or other statistical data from the area
simulated. There are two ways to aggregate home and work location. One defines first the home
location and computes a suitable work location (comparable to blue workers). The other does it
vice versa (comparable to white workers).
The secondary location choice module includes other activities. This can be done with various
statistical approaches.
A pattern generation module now uses this information to produce a daily activity pattern for
an agent (Vaughn et al., 1997; Bowman, 1998). It typically uses surveys to produce “realistic”
patterns.
Now we know what an agent wants to do during the day, but we also need to define when such
an activity should start, how long it should take and when it should be finished. Time allocation
module takes care of this. Some of the times are more variable (i.e. start/end time and duration of
leisure), some have fixed times (i.e. shopping activity can’t be done when shops are closed) and
some of them should have a minimum or maximum duration (i.e. and agent should work about 8
hours).
We have now a day plan of the agent. But there are still two things missing. How does the agent
get from one activity to another and what kind of transporation system it will use? A modal
choice module desides the travel mode. It is dependent on the household of the agent. If an agent
doesn’t have a car, it needs to take train, bus, tram, and so on. It also can go by foot. A bike or a
car taken in the morning should be at home again when the day ends.
Then the router module finds out which route the agent should take to go from one activity to
the next.
The day plan is now constructed and can be feed into the mobility simulation module. It simu-
lates all agents simultaniously on the network. Because of the interaction of the agents, conges-
tion can occur. So, some day plans cannot be fulfilled as they were planned. Those plans have
to be recalculated by the modules again and the process starts over. This is the feedback part
of the multi-agent simulation. This widely accepted method is systematic relaxation (Kaufman
et al., 1991; Nagel, 1994/95; Bottom, 2000) – that is, make preliminary plans, run the mobility
simulation, adapt the plans, run the simulation again, etc., until consistency between modules is
reached.

In this paper we use the the following subset of the modules described above:

• activity end time allocation module: It changes the end time of an activity. The duration
is fixed to a certain period (i.e. work duration is 8 hours).

• router module: It produces the fastest path from one activity to the next with the informa-
tion about the link travel time output of the previous mobility simulation.

• mobility simulation: It simulates the “real world” traffic of the agents over a day.

• agent database and feedback: It keeps track of the day plans of each agent and is respon-
sible for the iteration process (feedback).

1in this approach, location and activity are treated as being equal. other models seperate these two issues
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In the following sections we describe the modules in more detail.

2.1 Modules

2.1.1 Activity Time Allocation Module

If an existing plan of an agent needs to be changed, this module will be called. In this approach,
we choose randomly 10% of all agents to replan one of their plans in the databese. At the moment,
the module just randomly shifts the end time of the activities of the agents a little bit around.
Of course, it is not really sophisticated, but it demonstrates the concept of the time allocation
module. But since each module is implemented as a “plugin”, this module can be replaced by a
more enhanced implemetation.

2.1.2 Router

The router will be used in a similar way as the time allocation module. It is implemented as a
time dependent Dijkstra algorithm. As an input it uses the information of the link travel times of
the previous mobility simulation. The link travel times are encoded in 15 minute time bins, so
they can be used as the weights of the links in the network graph. Apart from relatively small
and essential technical details, the implementation of such an algorithm is straightforward (Jacob
et al., 1999). With this and the knowledge about activity chains, it computes the fastest path from
one activity to the next as a function in time. This path will be used by the agents for the next
mobility simulation.

2.1.3 Mobility Simulation

The mobility simulation simulates the physical world. It is implemented as a queue simulation,
which means that each street (link) is represented as a FIFO (first-in first-out) queue with two re-
strictions. First, each agent has to remain for a certain time on the link, corresponding to the free
speed travel time. Second, a link storage capacity is defined which limits the number of agents
on the link. If it is filled up, no more agents can enter this link.
Even though this structure is indeed very simple, it produces traffic as expected and it can run
directly off the data typically available for transportation planning purposes. On the other hand,
there are some limitations compared to reality, i.e. number of lanes, weaving lanes, turn connec-
tivities across intersections or signal schedules cannot be included into this model.
The output that the mobility simulation produces are events for each agent, such as entering/leaving
link, left/arrived at activity, and so on. With this it’s easy to produce differnet kinds of information
and indicators like link travel time (which i.e. will be used by the router), trip travel time, trip
length, percentage of congestion, and so on.
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2.1.4 Agent Database – Feedback

The Feedback is the most important part of this framework. Without it, agents cannot learn. This
leads from the fact that the modules produce dependencies about their computed information.
For example, congestion (computed by the mobility simulation) depends on plans (which were
created by the allocation modules and the router). On the other hand, plans depend on congestion.
The iteration process runs the mobility simulation with specific plans for the agents, then uses the
time allocator and the router to update the plans; these changed plans are again fed into the
mobility simulation, etc, until consistency between modules is reached.
But how do we know when a plan of an agent is a good plan?
To measure how good a plan for a certain agent is, we first feed it into the mobility simulation.
Because of the interaction between the agents, the defined plan normally cannot be executed as
it was planned. Whenever an agent arrives too late at a certain activity the plan gets a punished
by a (negative) score. It will also be punished for the duration of travel time. For executing an
activity the plan gets a reward (positive score). The calculation of the scores (one score point has
the value of one Euro) is described below:

• an agent will lose 18Euro/h for being late.

• an agent will lose 6Euro/h for traveling.

• The optimum duration of work is 8 hours (toptw ), the one for being at home is 16 hours
(topth). So, a plan will get full score if an agent spends all of its time executing these
activities for the optimum duration trough the whole day, meaning it won’t travel nor be
late or early.

The caluation of the activity duration is intoduced by Charypar and Nagel (2003). The score is
caluatated by the following equation:

Udur(tdur) = βdur · topt · ln(
tdur

t0
)

t0 = topt · e
−10 hours/(topt)

where tdur is the actual performed duration of the activity and βdur is the weight which is set to
6Euro/h. With this calculation, the maximum score is 120Euro (60Euro per activity).
The total score of a plan will therefore be calculated as:

Utot =
n∑

i=1

Uduri
−

m∑

i=1

Ulatei
−

k∑

i=1

Utraveli

After each mobility simulation all executed plans are scored. Then an agent can decide if it wants
to keep this plan for future use or if it removes this plan. An agent can keep a certain number of
plans to reuse those again. In this approach, each agent is allowed to keep the 5 best plans (which
have the highest scores).
For the next iteration, some of the agents will then pick their best plan of their own database,
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Figure 1: Switzerland network

some just randomly pick one out, some try the same plan again and the rest generates a new plan
by using the departure time allocation module and the router module (for more details see Raney
and Nagel (2004)).

3. Input Data & Scenario

3.1 Network

The street network that is used was originally developed for the Swiss regional planning authority
(Bundesamt für Raumentwicklung), and covered Switzerland. It was extended with the major
European transit corridors for a railway-related study (Vrtic et al., 1999). The network supposedly
contains the status for 1999, but contains at least one major error (a high capacity tunnel in Zürich
is missing). Our initial simulations resulted in traffic gridlock in Zürich, which was also reflected
in the VISUM assignment displaying V/C ratios significantly above 100%. A manual comparison
with a higher resolution network of Zürich led to the conclusion that capacity in Zürich was in
general significantly underestimated; in consequence, we manually increased the corresponding
road capacity for transit corridors through Zürich in our network.
After our modifications, the network has the fairly typical size of 10564 nodes and 28624 links
(Fig. 1). Also fairly typical, the major attributes on these links are type, length, speed, and
capacity.

3.2 Zürich Area Scenario
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Our starting point for demand generation for the full Switzerland scenario are 24-hour origin-
destination matrices from the Swiss regional planning authority (Bundesamt für Raumentwick-
lung).
The original 24-hour matrix is converted into 24 one-hour matrices using a three step heuris-
tic (Vrtic and Axhausen, 2002). The first step employs departure time probabilities by population
size of origin zone, population size of destination zone and network distance. These are cal-
culated using the 1994 Swiss National Travel Survey (Bundesamt für Statistik und Dienst für
Gesamtverkehrsfragen, 1996). The resulting 24 initial matrices are then corrected (calibrated)
against available hourly counts using the OD-matrix estimation module of VISUM (www.ptv.de).
Hourly counts are available from the counting stations on the national motorway system. Finally,
the hourly matrices are rescaled so that the totals over 24 hours match the original 24h matrix.
VISUM assignment of the matrices shows that the patterns of congestion over time are realistic
and consistent with the known patterns.
For the multi-agent simulation, these hourly matrices are then disaggregated into individual trips.
That is, we generate individual trips such that summing up the trips would again result in the
given OD matrix. The starting time for each trip is randomly selected between the starting and
the ending time of the validity of the OD matrix.
The OD matrices assume traffic analysis zones (TAZs) while in our simulations trips start on
links. We convert traffic analysis zones to links by the following heuristic:

• The geographic location of the zone is found via the geographical coordinate of its centroid
given by the data base.

• A circle with radius 3 km is drawn around the centroid.

• Each link starting within this circle is now a possible starting link for the trips. One of these
links is randomly selected and the trip start or end is assigned.

This leads to a list of approximately 5 million trips, or about 1 million trips between 6:00 AM and
9:00 AM. Since the origin-destination matrices are given on an hourly basis, these trips reflect
the daily dynamics. Intra-zonal trips are not included in those matrices, as by tradition.

Since an agent should keep more than one plan during the iteration process, one million agents
would not fit into memory anymore. So we restrict our interests to the Zürich Area only. This is
done with the following steps:

• We define the area of interest as a circle of 26 km radius with the center placed on the
“Bellevue” in Zürich City

• Each agent which does not cross this area in its daily plan is removed

• The remaining 260275 agents with the daily pattern “home-work” are then extended to the
“home-work-home” pattern, where the two homes are – of course – at the same location.

• The duration of the “work” activity are set to 8 hours
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• The paths of the trips “home to work” and “work to home” are created by the router module
based on the free speed link travel times of the network

• For the work activity a starting time window is defined between 7:08am and 8:52am 2.

At the end we get 260275 agents which has an initial day plan, looking like this:

<person id="6357267">
<plan>

<act type="h" x100="626820" y100="171700" link="13151"
end_time="06:43:48" />

<leg mode="car" dep_time="06:43:48">
<route>
4366 4341 4343 4344 4311 4310 4309 4308 4322 4373 4372
4371 4370 4378 4377 4368 3830 3829 3828 3827 3826 3814
3813 4207 4208 4044 4045 4046 4047 710 709 619 620 621
797 798 799 622 623 800 499 500 501 502 503 1377 1415
943 942 915 941 940 938 925 926 927 928 929 930 1405
1404 1403 1402 1401 1416 1388

</route>
</leg>
<act type="w" x100="659350" y100="272740" link="4003"

dur="08:00" />
<leg mode="car" dep_time="14:43:48">

<route>
1416 1401 1402 1403 1404 1405 930 929 928 927 926 925
938 940 941 915 942 943 1415 1377 503 502 501 500 499
800 623 622 799 798 797 621 620 619 709 710 4047 4046
4045 4044 4208 4207 3813 3814 3826 3827 3828 3829 3830
4368 4377 4378 4370 4371 4372 4373 4322 4308 4309 4310
4311 4344 4343 4341

</route>
</leg>
<act type="h" x100="626820" y100="171700" link="13151" />

</plan>
</person>

2The time window is calculated by assuming a normal distribution of the desired arrival time at work. The average
arrival time (µ) is 8am and the standard derivation (σ) is 0.5 hours. So the starttime/endtime of the time window is
calculated by tstart,end = µ ± 2·

√

3·σ
2

.
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4. Counts Data

Hourly counts data are available from the counting stations on the national motorways. There
are about 230 counting stations registered at the Swiss Federal Roads Authority (Bundesamt für
strassen). To use those for comparison purposes, the counting stations have to be matched to the
right links in the network.
We are using at the moment 33 stations (66 directions/links) since those had matched well on the
Switzerland network. Since we are just interested in the Züerich area, only a subset can be used.
Unfortunately there are only 6 useful counting stations left, means we can compare only 12 links
to reality.

For the future it is planned to use the counting data of Kanton Zürich (http://www.laerm.zh.ch).
There are about 300 “Taxomex” counting station registered in the whole area of the kanton ecxept
the cities of Winterthur and Zürich unfortunately. It will be nesessary to use them, ecpecially
when a higher resolution network will be used.

5. Computational Issues

5.1 Mobility Simulation

Computational issues for the mobility simulation are discussed in detail elsewhere (Cetin and
Nagel, 2003). The main result from those investigations is that, using a Pentium cluster with
64 CPUs and Myrinet communication, the queue simulation can run more than 500 times faster
than real time (excluding input and output), meaning that 24 hours of traffic of all of Switzerland
can be simulated in less than 3 minutes. For the results presented in this paper, two setups were
run simultaniously with 12 CPU’s per setup using ETHERNET communication. The average
computation time is ca. 30 minutes, simulating about 18 hours.

5.2 Performance

One iteration takes in the average about 100 minutes. The average duration of substeps of an
iteration is listed below:

• about 10 sec for the departure time allocation module

• about 22 min for the router module

• about 30 min for the mobility simulation module

• about 22 min for handling events
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• about 100 sec for writing the new plans

• the remaining time (about 24 min) are used for other I/O processes/bottlenecks, communi-
cation and data preparations

With this, about 15 to 20 iterations are done per day.

5.3 Disk Usage

A complete data set generated by one iteration produces about 280 MB of data. These will be
kept for the first and the last 5 iterations and also for every 10th iteration. For each of the other
iterations only about 40 MB are kept.

5.4 Memory Usage

Since we are simulating about 260’000 Agents which keeps at most 5 different plans and each
of them needs about 700 Bytes of memory plus some overhead, we end up by about 1 GB of
Memory. This is one of the main reason we will implement the agent database also in parallel.
The router module also need about 200 MB of Memory which is ok at the moment but could get
to a problem for a high resolution network.

6. Results

We present the results of four different setups of this scenario:

• All agents start their first trip (home-work) according to the OD Matrix described above
using route-replanning and activity-time-allocation to improve their plans. We will call this
setup acts-routes-OD-plans.

• All agents start their first trip (home-work) according to the OD Matrix described above
using only route-replanning to improve their plans. We will call this setup routes-only-OD-
plans.

• All agents start their first trip (home-work) at 6am using route-replanning and activity-time-
allocation to improve their plans. We will call this setup acts-routes-all6am.

• All agents start their first trip (home-work) at 6am using only route-replanning to improve
their plans. We will call this setup routes-only-all6am.

We compare the results with the following indicators:
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Figure 2: average travel times of acts-routes-OD-plans and routes-only-OD-plans
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(a) average travel times per iteration for acts-routes-
OD-plans setup
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(b) average travel times per iteration for routes-only-
OD-plans setup

• departure and arrival time histograms: The number of agents that arrive/depart from an
activity over time during a certain iteration.

• average travel time: The average travel time over all agents plans per iteration.

• avergage score: The average score over all agents per iteration.

• Count Data Comparision: Mean bias and error of of the simulations compared to the count-
ing datas described above.

6.1 OD Matrix Based Initial Plans

Since these plans are based on realistic time distributions (see above), we would assume that the
activity-time-allocation module will not affect the result that much. The re-routing module should
decrease the average travel time and congestion.
Figure 2 compares the average travel times over the iterations. The routes-only iteration (fig-
ure 2(b)) quickly gets to a stable result because re-routing is the only part which has to be opti-
mized. The small fluctuation leads from the fact that some percentage of agents still replan.
The acts-routes iteration (figure 2(a)) behaves in a similar way, but the average travel time is a
little bit higher than routes-only and also it fluctuates more. This is not surprising, since there are
two dependent re-planning parts which have to be optimized.

The figure 3 shows the scores per iteration of both setups. They are also similar to each other
while the acts-routes setup (figure 3(a)) has again more fluctuation than routes-only (figure 3(b)).
The reason is the same as described above.

11



Swiss Transport Research Conference

March 25–26, 2004

Figure 3: average scores of acts-routes-OD-plans and routes-only-OD-plans
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(a) average scores per iteration for acts-routes-OD-
plans setup
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(b) average scores per iteration for routes-only-OD-
plans setup

The histograms (figure 4) show, how the re-planning affects the agents. Starting with the same
configuration (figure 4(a) and 4(b)) the routes-only iteration only tries to minimize travel times,
so that the periods of arrivals decreases (see green graph of figure 4(d)), while departure stays the
same (see red graph of figure 4(d)).
On the other hand, re-planning departure time and routes changes also the red graph (see fig-
ure 4(c)). The two peaks of the arrival (green) graph are at 7:08am and 8:52am which is the
border of the time window we defined for these scenarios (see section 3.2). The reason for that
leads from the fact that agents which are too late or too early at work try to “squeeze” into this
time window and will more or less stay at this plan if they succeeded. Because the “departure
time allocation module” still shuffles the departure times, these two peaks will flatten as more
iterations are performed.

At last we look at the counts data. Figure 5 shows the relations of the two setups and the real datas
(see section 4). As expected, the two results do not differ very much, and they are comparable to
reality (see also Raney et al. (2003)). Also bias and errors3 are similar (see table 1).

These results could lead us to the question, why do we need to use “departure time allocation”
modules? Since we used the OD-Matrix it is not very surprising that the routes-only setup ends
up with the simulation being similar to the real world data. The next section (Sec. 6.2) will show
us what happens, if we do not know anything about the initial departure times of the agents.

3Mean absolute bias is 〈qsim − qfield〉, mean absolute error is 〈|qsim − qfield|〉, mean relative bias is
〈(qsim − qfield)/qfield〉, mean relative error is 〈|qsim − qfield|/qfield〉, where 〈.〉 means that the values are aver-
aged over all links where field results are available.
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Figure 4: arrival and departure histograms of acts-routes-OD-plans and routes-only-OD-plans
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(a) arrival and departure histograms of iteration 0 for
acts-routes-OD-plans setup
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(b) arrival and departure histograms of iteration 0 for
routes-only-OD-plans setup
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(c) arrival and departure histograms of iteration 130
for acts-routes-OD-plans setup
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(d) arrival and departure histograms of iteration 70 for
routes-only-OD-plans setup
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Table 1: Bias and Error of acts-routes-OD-plans and routes-only-OD-plans compared to field data
at 7-8am

Mean / Bias acts-routes-OD-plans routes-only-OD-plans

Mean Abs. Bias: 271.153 338.403

Mean Rel. Bias: 21.6% 20.2%

Mean Abs. Error: 445.438 529.219

Mean Rel. Error: 33.4% 37.0%

Figure 5: OD-Matrix based plans: comparison to counts data
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(a) counts data vs. 130th iteration of acts-routes-OD-
plans setup at 7-8am
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Figure 6: average travel times of acts-routes-all6am and routes-only-all6am
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(a) average travel times per iteration for acts-routes-
all6am setup
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(b) average travel times per iteration for routes-only-
all6am setup

6.2 Initial Plans with departure time at 6am for all agents

These setups take the same initial plans as the setups of section 6.1 except that all agents leave
their homes at 6am instead of the distribution from the OD-Matrix.
Figure 6 shows again the average of travel times for both setups. We see that this time, the routes-
only setup decreases travel time slower than before because it is harder to avoid congestions when
all agents starts travelling at the same time. Of course at the end, the average travel time will be
higher than the one described in section 6.1.
On the other hand the acts-routes setup decreases average travel time faster, because agents are
allowed to change their departure time, too.

Also the improvement of the average scores of acts-routes setup (figure 7(a)) shows up, while
there isn’t any improvement for routes-only (figure 7(b)). The explanation of the flutuation of
routes-only is, that during the iterations, some of the agents which are late at work have found
other routes which allow them to reach the arrival time window. But on the other hand, some of
the agents will find a faster path so that they need to wait longer until they are allowed to start
working.

The histograms (figure 8) also shows those facts. There are many more people who arrive between
6 and 7am in the routes-only setup (figure 8(d)) than in the acts-routes setup (figure 8(c)).

Comparing the results with real word data now shows a high descrepandency between the two
setups.
The routes-only setup cannot handle the fact, that almost everybody starts too early. So it overes-
timates the troughput between 6 and 7am and it will underestimates at the hours later.
In the acts-routes setup, agents slowly move to more appropriate departure times which – at the
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Figure 7: average scores of acts-routes-all6am and routes-only-all6am
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end – will convert to similar result as shown in section 6.1.
Of course the calculation of the bias and the error (table 2) produces now completely different
result for the routes-only setup.

7. Conclusion

The results show us one important conclusion:

Departure time information of OD-Matrices can be substituted by a time allocation module.

Table 2: Bias and Error of acts-routes-all6am and routes-only-all6am compared to field data at
6-7am and 7-8am

Mean / Bias acts-routes- routes-only- acts-routes- routes-only-
all6am 6-7am all6am 6-7am all6am 7-8am all6am 7-8am

Mean Abs. Bias: 807.292 562.792 -411.514 -312.347

Mean Rel. Bias: 100.8% 69.7% -27.7% -29.8%

Mean Abs. Error: 920.252 793.129 510.944 680.645

Mean Rel. Error: 108.1% 81.7% 32.8% 45.7%
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Figure 8: arrival and departure histograms of acts-routes-all6am and routes-only-all6am
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(a) arrival and departure histograms of iteration 0 for
acts-routes-all6am setup
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(b) arrival and departure histograms of iteration 0 for
routes-only-all6am setup
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(c) arrival and departure histograms of iteration 120
for acts-routes-all6am setup
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(d) arrival and departure histograms of iteration 60 for
routes-only-all6am setup
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Figure 9: departure time 6am plans: comparison to counts data
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(a) counts data vs. 120th iteration of acts-routes-
all6am setup at 6-7am
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(b) counts data vs. 60th iteration of routes-only-
all6am setup at 6-7am
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(c) counts data vs. 120th iteration of acts-routes-
all6am setup at 7-8am
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(d) counts data vs. 60th iteration of routes-only-OD-
plans setup at 7-8am
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In other words, it is possible to schedule daily plans with predefined activity chains without any
knowledge of departure times of activities. Furthermore, since the time allocation module is
not very sophisticated yet, there are possibilities to improve convergance faster than it is at the
moment.
The concept of “plugin” modules is robust in the way that it will converge to a similar “quasi-
stable” result starting with different initial conditions (plans). It is a small but important step to
improve this framework because other modules (see section 8) like pattern replanning modules,
etc. require time allocation.

8. Future Work

As already mentioned above, other replanning modules are planned, like other time allocation
or pattern replanning modules, which should also be implemented as “plugins”. We are also
investigating into other travel modes like public transport or pedestrian mode.

Another issue of interest is the possibility that agents could also learn during the day. They re-
route while they are stuck in congestion, drop an activity because they are already too late, and so
on. This “within day replanning” (Gloor, 2001) should help to improve their strategies faster than
only “day-by-day replanning” and the interaction with other entities (like traffic lights, changing
traffic signs and other ITS entities) can be added to the mobility simulation. Within-day learning
is more realistic since some types of decisions are made on time scales much shorter than a day
(Doherty and Axhausen, 1998).

Simulation speedup can also be improved by elimination of performance bottlenecks. At the mo-
ment the agent database keeps track of all agents of the simulation. Since recalculating an agents’
strategies is completely independent to other agents, it is useful to introduce parallelism into this.
These “multiple agent databases” should then be controled by a separate module which keeps
track of the feedback. This leads us to a clear separation of “agent databases” and “feedback”.

The departure time allocation module itself can be improoved, too. It should recognize when
agents are too early or too late, so the adaption to a more realistic departure time should be done
with less iterations.

High resoltion networks are another issue. Especially if there is more preciser information avail-
able about locations. The main goal will be that each agent has its home location at a street
with a house number, probabely a ramp to its garage, a private pedestrian path to the next tram
station, and so on. In high resolution networks, intersection bottlenecks can be shown also at spe-
cific points in a big city. Last but not least, high resolution scenarios are indeed a compuational
challange.

With high resolution networks, more precise count data is required to compare with. There is
some effort to extract information of the raw data of the kanton Zürich which gives more precise
information about local traffic situations.
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9. Summary

The goal of this work is a multi-agent traffic simulation of a large scenario, like high resolution
scenario of the region of Zürich. This work should demonstrate the feasibility of this technology
on such a large scale, and it should be useful for research questions. A challenge is to keep the
computational performance fast enough so that such problem sizes can be computed over night,
rather than over many months as is currently the case with similar packages, e.g. TRANSIMS
(www.transims.net).

This paper presents intermediate results of this work. The intent of these intermediate results
was to test if the technology is able to calculate the occurence of trips rather than extract this
information through surveys. This will go together with an extension of the technology towards
activity-based demand generation. Further details of this will be reported in the years to come.
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